Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Molecules ; 27(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36296501

RESUMEN

The 4-allyl guaiacol is a natural phenolic molecule that has been widely studied for its antioxidant capacity against reactive-oxygen-species-mediated cellular damage. Therefore, we hypothesized that concomitant use of an antioxidant and NSAID may decrease the risk of gastrointestinal toxicity and make the therapy safer. To address the gastrointestinal toxicity of conventional NSAIDs, a new S-naproxen-4-allyl guaiacol chimera (MAS-1696) was computationally developed, chemically synthesized, and tested for anti-inflammatory effectiveness and gastrointestinal safety. The inhibitory potency of MAS-1696 tested against cyclooxygenase-2 (COX2), 15-lipoxygenase-2 (15-LOX2), and lipoxygenase-5 (5-LOX) in vitro revealed a stronger inhibition of COX2. Furthermore, the MAS-1696 chimera increased the COX selectivity index by 23% as compared to the parent compound naproxen, implying higher efficacy and gastric safety. In vivo data showed that MAS-1696 was less likely to cause gastrointestinal harm than naproxen while also exerting anti-inflammatory and analgesic effects equivalent to or superior to naproxen. In conclusion, MAS-1696 is orally active, bio-labile, and crystalline, making it a medication that may be administered orally.


Asunto(s)
Enfermedades Gastrointestinales , Naproxeno , Humanos , Antiinflamatorios , Antiinflamatorios no Esteroideos/química , Antioxidantes , Araquidonato 15-Lipooxigenasa , Ciclooxigenasa 2 , Enfermedades Gastrointestinales/tratamiento farmacológico , Guayacol , Naproxeno/farmacología , Naproxeno/uso terapéutico , Oxígeno
2.
J Enzyme Inhib Med Chem ; 36(1): 1472-1487, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34210233

RESUMEN

A series of 1,2,3-trisubstituted indolizines (2a-2f, 3a-3d, and 4a-4c) were screened for in vitro whole-cell anti-tubercular activity against the susceptible H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 2b-2d, 3a-3d, and 4a-4c were active against the H37Rv-MTB strain with minimum inhibitory concentration (MIC) ranging from 4 to 32 µg/mL, whereas the indolizines 4a-4c, with ethyl ester group at the 4-position of the benzoyl ring also exhibited anti-MDR-MTB activity (MIC = 16-64 µg/mL). In silico docking study revealed the enoyl-acyl carrier protein reductase (InhA) and anthranilate phosphoribosyltransferase as potential molecular targets for the indolizines. The X-ray diffraction analysis of the compound 4b was also carried out. Further, a safety study (in silico and in vitro) demonstrated no toxicity for these compounds. Thus, the indolizines warrant further development and may represent a novel promising class of InhA inhibitors and multi-targeting agents to combat drug-sensitive and drug-resistant MTB strains.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Indolizinas/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Oxidorreductasas/antagonistas & inhibidores , Antituberculosos/química , Indolizinas/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/enzimología
3.
Molecules ; 26(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34500672

RESUMEN

Indoles derived from both natural sources or artificial synthetic methods have been known to interact with aryl hydrocarbon receptors (AhR), and exhibit anticancer activity. In light of these attractive properties, a series of hybrid molecules with structural features of indoles, i.e., those bearing a pyrazoline nucleus, were evaluated for their enhanced anticancer activity. The designed molecules were subjected to molecular docking in order to screen for potential AhR interacting compounds, and the identified indolyl dihydropyrazole derivatives were synthesized. The synthesized compounds were characterized, and their cytotoxicity was evaluated against four human cancer cell lines using the MTT assay. Based on the Glide g-score, H-bonding interactions and bonding energy of 20 candidate molecules were selected for further analysis from the 64 initially designed molecules. These candidate molecules have shown promising anti-proliferative activity against the cell lines tested. Among these candidate molecules, the compounds with hydroxy phenyl substitution on the pyrazoline ring have shown potent activity across all the tested cell lines. The designed scaffold was proven effective for screening potential candidate molecules with anticancer properties, and may be further optimized structurally for yielding the ideal anti-tumorigenic compound for the treatment of various cancers.


Asunto(s)
Antineoplásicos/química , Indoles/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
4.
Molecules ; 26(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200764

RESUMEN

The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a-e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, ß = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Indolizinas/química , Antiinflamatorios/química , Cristalografía por Rayos X/métodos , Ciclooxigenasa 2/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indometacina/química , Relación Estructura-Actividad
5.
Molecules ; 25(6)2020 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-32183140

RESUMEN

Malaria, affecting all continents, remains one of the life-threatening diseases introduced by parasites that are transmitted to humans through the bites of infected Anopheles mosquitoes. Although insecticides are currently used to reduce malaria transmission, their safety concern for living systems, as well as the environment, is a growing problem. Therefore, the discovery of novel, less toxic, and environmentally safe molecules to effectively combat the control of these vectors is in high demand. In order to identify new potential larvicidal agents, a series of 2-aryl-1,2-dihydroquinazolin-4-one derivatives were synthesized and evaluated for their larvicidal activity against Anopheles arabiensis. The in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of the compounds were also investigated and most of the derivatives possessed a favorable ADMET profile. Computational modeling studies of the title compounds demonstrated a favorable binding interaction against the acetylcholinesterase enzyme molecular target. Thus, 2-aryl-1,2-dihydroquinazolin-4-ones were identified as a novel class of Anopheles arabiensis insecticides which can be used as lead molecules for the further development of more potent and safer larvicidal agents for treating malaria.


Asunto(s)
Anopheles/efectos de los fármacos , Simulación por Computador , Insecticidas/toxicidad , Malaria/parasitología , Mosquitos Vectores/efectos de los fármacos , Quinazolinas/toxicidad , Animales , Cristalografía por Rayos X , Insecticidas/síntesis química , Insecticidas/química , Larva/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Quinazolinas/síntesis química , Quinazolinas/química , Estereoisomerismo
6.
ScientificWorldJournal ; 2014: 189824, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25610898

RESUMEN

Mosquitoes are the major vectors of parasites and pathogens affecting humans and domestic animals. The widespread development of insecticide resistance and negative environmental effects of most synthetic compounds support an interest in finding and developing alternative products against mosquitoes. Natural coumarins and synthetic coumarin analogues are known for their several pharmacological properties, including being insecticidal. In the present study halogenated coumarins (3-mono/dibromo acetyl, 6-halogenated coumarin analogues) were screened for larvicidal, adulticidal, and repellent properties against Anopheles arabiensis, a zoophilic mosquito that is one of the dominant vectors of malaria in Africa. Five compounds exerted 100% larval mortality within 24 h of exposure. All coumarins and halogenated coumarins reversibly knocked down adult mosquitoes but did not kill them after 24 h of exposure. Repellent properties could not be evidenced. Five compounds were considered potential larvicidal agents for further research and development, while adulticidal activity was considered only mild to moderate.


Asunto(s)
Anopheles , Cumarinas , Repelentes de Insectos , Insecticidas , Control de Mosquitos , Animales , Cumarinas/síntesis química , Cumarinas/química , Cumarinas/farmacología , Humanos , Repelentes de Insectos/síntesis química , Repelentes de Insectos/química , Repelentes de Insectos/farmacología , Insecticidas/síntesis química , Insecticidas/química , Insecticidas/farmacología , Ganado
7.
Int J Biol Macromol ; 274(Pt 2): 133285, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925196

RESUMEN

In the current study, two sets of compounds: (E)-1-(2-(4-substitutedphenyl)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium derivatives (3a-3e); and (E)-3-(substitutedbenzoyl)-7-((hydroxyimino)methyl)-2-substitutedindolizine-1-carboxylate derivatives (5a-5j), were synthesized and biologically evaluated against two strains of Mycobacterial tuberculosis (ATCC 25177) and multi-drug resistant (MDR) strains. Further, they were also tested in vitro against the mycobacterial InhA enzyme. The in vitro results showed excellent inhibitory activities against both MTB strains and compounds 5a-5j were found to be more potent, and their MIC values ranged from 5 to 16 µg/mL and 16-64 µg/mL against the M. tuberculosis (ATCC 25177) and MDR-TB strains, respectively. Compound 5h with phenyl and 4-fluorobenzoyl groups attached to the 2- and 3-position of the indolizine core was found to be the most active against both strains with MIC values of 5 µg/mL and 16 µg/mL, respectively. On the other hand, the two sets of compounds showed weak to moderate inhibition of InhA enzyme activity that ranged from 5 to 17 % and 10-52 %, respectively, with compound 5f containing 4-fluoro benzoyl group attached to the 3-position of the indolizine core being the most active (52 % inhibition of InhA). Unfortunately, there was no clear correlation between the InhA inhibitory activity and MIC values of the tested compounds, indicating the probability that they might have different modes of action other than InhA inhibition. Therefore, a computational investigation was conducted by employing molecular docking to identify their putative drug target(s) and, consequently, understand their mechanism of action. A panel of 20 essential mycobacterial enzymes was investigated, of which ß-ketoacyl acyl carrier protein synthase I (KasA) and pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzymes were revealed as putative targets for compounds 3a-3e and 5a-5j, respectively. Moreover, in silico ADMET predictions showed adequate properties for these compounds, making them promising leads worthy of further optimization.

8.
J Microencapsul ; 30(3): 257-64, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23190167

RESUMEN

Mucoadhesive microspheres of sitagliptin (SITCM), a new anti-diabetic drug was prepared with carbopol 934 P using Buchi B-90 nano spray drier and optimized to analyse the key effects and relations of three factors on formulation of SITCM were studied. The appearance of the microspheres was found to be shriveled to nearly spherical, with a narrow size of 2-8 µm. The drug loading and percentage yield was found to be 73 ± 0.2% and 92 ± 0.3%, respectively. In vitro release indicated Korsmeyer-Peppas pattern mucoadhesion of SITCM-8 was found to be 7.8 ± 0.3 h. In vivo studies in rats suggest that the sitagliptin was retained in the gastrointestinal tract for an extended period of time (∼12 h) and control group was reduced significantly (∼4 h). This study concludes that the mucoadhesive microsphere could be one of the most appropriate drug delivery approaches for the successful delivery of sitagliptin.


Asunto(s)
Química Farmacéutica , Hipoglucemiantes/farmacología , Microesferas , Pirazinas/farmacología , Triazoles/farmacología , Animales , Diseño de Fármacos , Microscopía Electrónica de Rastreo , Pirazinas/química , Conejos , Ratas , Fosfato de Sitagliptina , Triazoles/química
9.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36015129

RESUMEN

Currently, gastro-retentive dosage forms achieved a remarkable position among the oral drug delivery systems. This is a broadly used technique to hold the drug delivery systems for a long duration in the gastro intestine (GI) region, slow drug delivery, and overcome other challenges related to typical oral delivery such as low bioavailability. The current work aimed to formulate and characterize a new expandable gastro-retentive system through Itopride Hydrochloride (IH)'s unfolding process for controlled release. The IH-loaded unfolding film formulation was optimized using the Box-Behnken design for folding endurance and length of tested layer (LTL). Initially, the formulation was made using several anti-adhesive additives to promote the unfolding mechanism. Citric acid and sodium bicarbonate were selected as anti-adhesives based on these results. The enfolded film in a capsule shell was shown to unroll in the stomach fluids and render drug delivery up to 12 h in acidic conditions. A fabricated system should have dimensions more than the size of the relaxed pyloric sphincter, and as required, >20 mm LTL was identified. This further confirms that the residence period in the stomach is irrelevant to the fed or fasted condition. Based on desirability criteria, the formulation containing 143.83, 0.7982, and 14.6096 Eudragit L100, PEG, and sodium bicarbonate are selected as optimized formulations (O-IH-UF). The optimized formulation was further analyzed for various parameters such as tensile strength, mechanical strength, unfolding nature, degradability, and in vitro release studies. The pharmacokinetic study revealed greater AUC (area under the curve) and long half-life with the designed O-IH-UF formulation, confirming that the unfolding film type can be a favorable drug system for enhancing the bioavailability of low soluble drugs. The results showed that unfolding types of gastro retentive systems could potentiate the drugs with stability issues in an alkaline medium or those with absorption in acidic conditions.

10.
Curr Top Med Chem ; 21(4): 295-306, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33138763

RESUMEN

BACKGROUND: Tuberculosis remains one of the most deadly infectious diseases worldwide due to the emergence of multi-drug resistance (MDR) and extensively drug resistance (XDR) strains of Mycobacterium tuberculosis (MTB). AIMS: Currently, available drugs are getting resistant and toxic. Hence, there is an urgent need for the development of potent molecules to treat tuberculosis. MATERIALS AND METHODS: Herein, the screening of a total of eight symmetrical 1,4-dihydropyridine (1,4- DHP) derivatives (4a-4h) was carried out for whole-cell anti-TB activity against the susceptible H37Rv and MDR strains of MTB. RESULTS AND DISCUSSION: Most of the compounds exhibited moderate to excellent activity against the susceptible H37Rv. Moreover, the most promising compound 4f (against H37Rv) having paratrifluoromethyl phenyl group at 4-position and bis para-methoxy benzyl ester group at 3- and 5- positions of 1,4-dihydropyridine pharmacophore, exhibited no toxicity, but demonstrated weak activity against MTB strains resistant to isoniazid and rifampicin. In light of the inhibitory profile of the title compounds, enoyl-acyl carrier protein reductase (InhA) appeared to be the appropriate molecular target. A docking study of these derivatives against InhA receptor revealed favorable binding interactions. Further, in silico predicted ADME properties of these compounds 4a-4h were found to be in the acceptable ranges, including satisfactory Lipinski's rule of five, thereby indicating their potential as drug-like molecules. CONCLUSION: In particular, the 1,4-DHP derivative 4f can be considered an attractive lead molecule for further exploration and development of more potent anti-TB agents as InhA inhibitors.


Asunto(s)
Proteína Transportadora de Acilo/antagonistas & inhibidores , Antituberculosos/farmacología , Dihidropiridinas/farmacología , Inhibidores Enzimáticos/farmacología , Oxidorreductasas/antagonistas & inhibidores , Antituberculosos/química , Dihidropiridinas/química , Diseño de Fármacos , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Relación Estructura-Actividad
11.
Adv Med Educ Pract ; 12: 1465-1475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938140

RESUMEN

BACKGROUND: With the expansion in pharmacy education in Saudi Arabia, there is a pressing need to maintain quality assurance in pharmacy programs using several tools. The progress test is a formative assessment tool that can serve to provide information to all stakeholders. This study evaluated the results of a unified progress test that was shared among 15 colleges of pharmacy. METHODS: The progress test was composed of 100 MCQs where 30% of which cover basic pharmaceutical sciences and 70% cover pharmacy practice. The questions were collected from all the 15 colleges of pharmacy participated in the test. The test was administered online to all undergraduate students in the professional programs of these colleges. RESULTS: The overall attendance rate was 80% from the total number of students enrolled in the participating colleges. Mean scores of students in basic pharmaceutical sciences were relatively higher than in pharmacy practice. The assessment results of the students in the unified program learning outcomes among colleges were higher in the domains of knowledge and skills compared to competence domain. There was a significant increment in the mean scores of the students as they progress through the years of the professional program. No correlation was found between the mean scores in the test and the cumulative grade point average (cGPA) of all students regardless of their level. CONCLUSION: The results indicated growth and maintenance of the gained knowledge and skills by the students as they progress through the years of the professional program with consistency in the results among the participating colleges. Sharing a unified test was effective as a valuable tool for the colleges of pharmacy for the purposes of benchmarking and improving the curricula. In addition, it could serve to evaluate learning of students and harmonize knowledge and skills gained by students at different institutions.

12.
Drug Des Devel Ther ; 14: 1027-1039, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32214795

RESUMEN

BACKGROUND AND PURPOSE: Tuberculosis has been reported to be the worldwide leading cause of death resulting from a sole infectious agent. The emergence of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has made the battle against the infection more difficult since most currently available therapeutic options are ineffective against these resistant strains. Therefore, novel molecules need to be developed to effectively treat tuberculosis disease. Preliminary docking studies revealed that tetrahydropyrimidinone derivatives have favorable interactions with the thymidylate kinase receptor. In the present investigation, we report the synthesis and the mycobacterial activity of several pyrimidinones and pyrimidinethiones as potential thymidylate kinase inhibitors. METHODS: The title compounds (1a-d) and (2a-b) were synthesized by a one-pot three-component Biginelli reaction. They were subsequently characterized and used for whole-cell anti-TB screening against H37Rv and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) by the resazurin microplate assay (REMA) plate method. Molecular modeling was conducted using the Accelry's Discovery Studio 4.0 client program to explain the observed bioactivity of the compounds. The pharmacokinetic properties of the synthesized compounds were predicted and analyzed. RESULTS: Of the compounds tested for anti-TB activity, pyrimidinone 1a and pyrimidinethione 2a displayed moderate activity against susceptible MTB H37Rv strains at 16 and 32 µg/mL, respectively. Only compound 2a was observed to exert modest activity at 128 µg/mL against MTB strains with cross-resistance to rifampicin and isoniazid. The presence of the trifluoromethyl group was essential to retain the inhibitory activity of compounds 1a and 2a. Molecular modeling studies of these compounds against thymidylate kinase targets demonstrated a positive correlation between the bioactivity and structure of the compounds. The in-silico ADME (absorption, distribution, metabolism, and excretion) prediction indicated favorable pharmacokinetic and drug-like properties for most compounds. CONCLUSION: Pyrimidinone 1a and pyrimidinethione 2a were identified as the leading compounds and can serve as a starting point to develop novel anti-TB therapeutic agents.


Asunto(s)
Antituberculosos/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Pirimidinonas/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Pirimidinonas/síntesis química , Pirimidinonas/química , Relación Estructura-Actividad
13.
Antibiotics (Basel) ; 9(5)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392709

RESUMEN

A series of ethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-3-carboxylates 4a-f and dimethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylates 4g-k have been synthesized and evaluated for their anti-tubercular (TB) activities against H37Rv (American Type Culture Collection (ATCC) strain 25177) and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis by resazurin microplate assay (REMA). Molecular target identification for these compounds was also carried out by a computational approach. All test compounds exhibited anti-tuberculosis (TB) activity in the range of 8-128 µg/mL against H37Rv. The test compound dimethyl-1-(4-fluorobenzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylate 4j emerged as the most promising anti-TB agent against H37Rv and multidrug-resistant strains of Mycobacterium tuberculosis at 8 and 16 µg/mL, respectively. In silico evaluation of pharmacokinetic properties indicated overall drug-likeness for most of the compounds. Docking studies were also carried out to investigate the binding affinities as well as interactions of these compounds with the target proteins.

14.
Antibiotics (Basel) ; 9(6)2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32575727

RESUMEN

A series of 2,4,5 trisubstituted-1,2,3-triazole analogues have been screened for their antifungal activity against five fungal strains, Candida parapsilosis, Candida albicans, Candida tropicalis, Aspergillus niger, and Trichophyton rubrum, via a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) microdilution assay. Compounds GKV10, GKV11, and GKV15 emerged as promising antifungal agents against all the fungal strains used in the current study. One of the highly active antifungal compounds, GKV10, was selected for a single-crystal X-ray diffraction analysis to unequivocally establish its molecular structure, conformation, and to understand the presence of different intermolecular interactions in its crystal lattice. A cooperative synergy of the C-H···O, C-H···N, C-H···S, C-H···π, and π···π intermolecular interactions was present in the crystal structure, which contributed towards the overall stabilization of the lattice. A molecular docking study was conducted for all the test compounds against Candida albicans lanosterol-14α-demethylase (pdb = 5 tzl). The binding stability of the highly promising antifungal test compound, GKV15, from the series was then evaluated by molecular dynamics studies.

15.
J Biomol Struct Dyn ; 37(7): 1830-1842, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29697293

RESUMEN

Biotin is very important for the survival of Mycobacterium tuberculosis. 7,8-Diamino pelargonic acid aminotransaminase (DAPA) is a transaminase enzyme involved in the biosynthesis of biotin. The benzothiazole title compounds were investigated for their in vitro anti-tubercular activity against two tubercular strains: H37Rv (ATCC 25,177) and MDR-MTB (multidrug-resistant M. tuberculosis, resistant to isoniazid, rifampicin, and ethambutol) by an agar incorporation method. The possible binding mode and predicted affinity were computed using a molecular docking study. Among the synthesized compounds in the series, the title compound {2-(benzo[d]thiazol-2-yl-methoxy)-5-fluorophenyl}-(4-chlorophenyl)-methanone was found to exhibit significant activity with minimum inhibitory concentrations of 1 µg/mL and 2 µg/mL against H37Rv and MDR-MTB, respectively; this compound showed the highest binding affinity (-24.75 kcal/mol) as well.


Asunto(s)
Antituberculosos/química , Benzotiazoles/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Antituberculosos/farmacología , Benzotiazoles/farmacología , Sitios de Unión , Enlace de Hidrógeno , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Unión Proteica , Relación Estructura-Actividad
16.
Antibiotics (Basel) ; 8(4)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31816928

RESUMEN

Novel series of diversely substituted indolizines were designed, synthesized, and evaluated for their in vitro anti-mycobacterial activity against H37Rv and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB). Many compounds exhibited significant inhibitory activity against MTB H37Rv strains. Indolizines 2d, 2e, and 4 were also found to be active against MTB clinical isolates with multi-resistance to rifampicin and isoniazid. Indolizine 4 was identified as the most promising anti-mycobacterial agent, displaying minimum inhibitory concentration (MIC) values of 4 and 32 µg/mL against H37Rv and MDR strains, respectively. Furthermore, an in silico study was carried out for prospective molecular target identification and revealed favorable interactions with the target enzymes CYP 121, malate synthase, and DNA GyrB ATPase. None of the potent molecules presented toxicity against peripheral blood mononuclear (PBM) cell lines, demonstrating their potentiality to be used for drug-sensitive and drug-resistant tuberculosis therapy.

17.
Biomolecules ; 9(11)2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661893

RESUMEN

The cyclooxygenase-2 (COX-2) enzyme is considered to be an important target for developing novel anti-inflammatory agents. Selective COX-2 inhibitors offer the advantage of lower adverse effects that are commonly associated with non-selective COX inhibitors. In this work, a novel series of methyl 3-(substituted benzoyl)-7-substituted-2-phenylindolizine-1-carboxylates was synthesized and evaluated for COX-2 inhibitory activity. Compound 4e was identified as the most active compound of the series with an IC50 of 6.71 M, which is comparable to the IC50 of indomethacin, a marketed non-steroidal anti-inflammatory drug (NSAID). Molecular modeling and crystallographic studies were conducted to further characterize the compounds and gain better understanding of the binding interactions between the compounds and the residues at the active site of the COX-2 enzyme. The pharmacokinetic properties and potential toxic effects were predicted for all the synthesized compounds, which indicated good drug-like properties. Thus, these synthesized compounds can be considered as potential lead compounds for developing effective anti-inflammatory therapeutic agents.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Indolizinas/química , Indolizinas/farmacología , Antiinflamatorios no Esteroideos/metabolismo , Antiinflamatorios no Esteroideos/toxicidad , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/toxicidad , Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/metabolismo , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/toxicidad , Humanos , Indolizinas/metabolismo , Indolizinas/toxicidad , Simulación del Acoplamiento Molecular , Conformación Proteica , Relación Estructura-Actividad
18.
Med Chem ; 15(3): 311-326, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29968540

RESUMEN

BACKGROUND: Benzothiazole derivatives are known for anti-TB properties. Based on the known anti-TB benzothiazole pharmacophore, in the present study, we described the synthesis, structural elucidation, and anti-tubercular screening of a series of novel benzothiazole (BNTZ) derivatives (BNTZ 1-7 and BNTZ 8-13). OBJECTIVE: The study aims to carry out the development of benzothiazole based anti-TB compounds. METHODS: Title compounds are synthesized by microwave method and purified by column chromatography. Characterization of the compounds is achieved by FT-IR, NMR (1H and 13C), LCMS and elemental analysis. Screening of test compounds for anti-TB activity is achieved by Resazurin Microplate Assay (REMA) Plate method. RESULTS: It was noted that the BNTZ compound with an isoquinoline nucleus (BNTZ 9) exhibited remarkable anti-tubercular activity at 8 µg/mL against both the susceptible strain H37Rv and the multi-drug resistant tuberculosis strains of Mycobacterium tuberculosis. On the other hand, the BNTZ compound with a naphthalene nucleus (BNTZ 2) revealed anti-tubercular activity at 6 µg/mL and 11 µg/mL against both the susceptible strain H37Rv and the multi-drug resistant tuberculosis strains of M. tuberculosis, respectively. One of the selected BNTZ derivatives BNTZ 13 was used for single crystal X-ray studies. CONCLUSION: To identify the appropriate target for potent BNTZ compounds from the series, molecular modeling studies revealed the multiple strong binding of several BNTZs with mycobacterium lysine-ɛ-aminotransferase and decaprenyl-phosphoryl-ß-D-ribose 2'-oxidase. The interaction is derived by forming favorable hydrogen bonds and stacking interactions. This new class of BNTZ compounds gave promising anti-tubercular actions in the low micromolar range, and can be further optimized on a structural basis to develop promising, novel, BNTZ pharmacophore-based anti-tubercular drugs.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Benzotiazoles/química , Benzotiazoles/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Antituberculosos/síntesis química , Benzotiazoles/síntesis química , Cromatografía Liquida , Simulación por Computador , Cristalografía por Rayos X , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Análisis Espectral/métodos , Relación Estructura-Actividad
19.
PLoS One ; 14(6): e0217270, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31163040

RESUMEN

Indolizines are heteroaromatic compounds, and their synthetic analogues have reportedly showed promising pharmacological properties. In this study, a series of synthetic 7-methoxy-indolizine derivatives were synthesised, characterised and evaluated for in vitro whole-cell anti-tuberculosis (TB) screening against susceptible (H37Rv) and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) using the resazurin microplate assay method. The cytotoxicity was evaluated using the MTT assay. In silico molecular-docking study was conducted for compounds 5a-j against enoyl-[acyl-carrier] protein reductase, a key enzyme of the type II fatty acid synthesis that has attracted much interest for the development of novel anti-TB compounds. Thereafter, molecular dynamic (MD) simulation was undertaken for the most active inhibitors. Compounds 5i and 5j with the methoxy functional group at the meta position of the benzoyl group, which was at the third position of the indolizine nucleus, demonstrated encouraging anti-TB activity against MDR strains of MTB at 16 µg/mL. In silico studies showed binding affinity within the range of 7.07-8.57 kcal/mol, with 5i showing the highest binding affinity. Hydrogen bonding, π-π- interactions, and electrostatic interactions were common with the active site. Most of these interactions occurred with the catalytic amino acids (Pro193, Tyr158, Phe149, and Lys165). MD simulation showed that 5j possessed the highest binding affinity toward the enzyme, according to the two calculation methods (MM/PBSA and MM/GBSA). The single-crystal X-ray studies of compounds 5c and 5d revealed that the molecular arrangements in these two structures were mostly guided by C-H···O hydrogen-bonded dimeric motifs and C-H···N hydrogen bonds, while various secondary interactions (such as π···π and C-H···F) also contributed to crystal formation. Compounds 5a, 5c, 5i, and 5j exhibited no toxicity up to 500 µg/mL. In conclusion, 5i and 5j are promising anti-TB compounds that have shown high affinity based on docking and MD simulation results.


Asunto(s)
Antituberculosos , Proteínas Bacterianas , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Indolizinas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/crecimiento & desarrollo , Antituberculosos/síntesis química , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Indolizinas/síntesis química , Indolizinas/química , Indolizinas/farmacología , Leucocitos Mononucleares/metabolismo
20.
J Biomol Struct Dyn ; 36(8): 2163-2178, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28657441

RESUMEN

A series of trisubstituted indolizine analogues has been designed as a result of a fragment-based approach to target the inhibition of mycobacterial enoyl-acyl carrier protein reductase. Anti-tuberculosis (TB) screening of the characterized compounds by a resazurin microplate assay method revealed that ethyl group at second position of indolizine nucleus exhibited activity against susceptible and multidrug-resistant strains of Mycobacterium tuberculosis at concentration of 5.5 and 11.3 µg/mL, respectively. A molecular docking study was also conducted to evaluate the stability of the active compounds, and compound with ethyl substitution at second position of indolizine nucleus showed the highest free binding energy of ΔG -24.11 (kcal/mol), a low clash score of 3.04, and high lipo score of -13.33. Indolizine analog with ethyl substitution at second position demonstrated Molecular Mechanics/Generalized Born Surface Area (-23.85 kcal/mol). Two molecular dynamics studies were computed (100 ps and 50 ns) to calculate the relationship between the potential and kinetic energies of the active anti-TB compound with time and temperature. The discovery of this lead may have a positive impact on anti-TB drug discovery.


Asunto(s)
Antituberculosos/metabolismo , Proteínas Bacterianas/metabolismo , Indolizinas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/metabolismo , Antituberculosos/química , Antituberculosos/farmacología , Proteínas Bacterianas/química , Indolizinas/química , Indolizinas/farmacología , Cinética , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Unión Proteica , Dominios Proteicos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA