Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
BMC Plant Biol ; 23(1): 130, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882678

RESUMEN

BACKGROUND: Early blight, caused by the necrotrophic fungal pathogen Alternaria solani, is an economically important disease affecting the tuber yield worldwide. The disease is mainly controlled by chemical plant protection agents. However, over-using these chemicals can lead to the evolution of resistant A. solani strains and is environmentally hazardous. Identifying genetic disease resistance factors is crucial for the sustainable management of early blight but little effort has been diverted in this direction. Therefore, we carried out transcriptome sequencing of the A. solani interaction with different potato cultivars with varying levels of early blight resistance to identify key host genes and pathways in a cultivar-specific manner. RESULTS: In this study, we have captured transcriptomes from three different potato cultivars with varying susceptibility to A. solani,  namely Magnum Bonum, Désirée, and Kuras, at 18 and 36 h post-infection. We identified many differentially expressed genes (DEGs) between these cultivars, and the number of DEGs increased with susceptibility and infection time. There were 649 transcripts commonly expressed between the potato cultivars and time points, of which 627 and 22 were up- and down-regulated, respectively. Interestingly, overall the up-regulated DEGs were twice in number as compared to down-regulated ones in all the potato cultivars and time points, except Kuras at 36 h post-inoculation. In general, transcription factor families WRKY, ERF, bHLH, MYB, and C2H2 were highly enriched DEGs, of which a significant number were up-regulated. The majority of the key transcripts involved in the jasmonic acid and ethylene biosynthesis pathways were highly up-regulated. Many transcripts involved in the mevalonate (MVA) pathway, isoprenyl-PP, and terpene biosynthesis were also up-regulated across the potato cultivars and time points. Compared to Magnum Bonum and Désirée, multiple components of the photosynthesis machinery, starch biosynthesis and degradation pathway were down-regulated in the most susceptible potato cultivar, Kuras. CONCLUSIONS: Transcriptome sequencing identified many differentially expressed genes and pathways, thereby contributing to the improved understanding of the interaction between the potato host and A. solani. The transcription factors identified are attractive targets for genetic modification to improve potato resistance against early blight. The results provide important insights into the molecular events at the early stages of disease development, help to shorten the knowledge gap, and support potato breeding programs for improved early blight disease resistance.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Resistencia a la Enfermedad/genética , Fitomejoramiento , Perfilación de la Expresión Génica
2.
J Exp Bot ; 73(15): 5111-5127, 2022 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-35727101

RESUMEN

The five Nordic countries span the most northern region for field cultivation in the world. This presents challenges per se, with short growing seasons, long days, and a need for frost tolerance. Climate change has additionally increased risks for micro-droughts and water logging, as well as pathogens and pests expanding northwards. Thus, Nordic agriculture demands crops that are adapted to the specific Nordic growth conditions and future climate scenarios. A focus on crop varieties and traits important to Nordic agriculture, including the unique resource of nutritious wild crops, can meet these needs. In fact, with a future longer growing season due to climate change, the region could contribute proportionally more to global agricultural production. This also applies to other northern regions, including the Arctic. To address current growth conditions, mitigate impacts of climate change, and meet market demands, the adaptive capacity of crops that both perform well in northern latitudes and are more climate resilient has to be increased, and better crop management systems need to be built. This requires functional phenomics approaches that integrate versatile high-throughput phenotyping, physiology, and bioinformatics. This review stresses key target traits, the opportunities of latitudinal studies, and infrastructure needs for phenotyping to support Nordic agriculture.


Asunto(s)
Agricultura , Fenómica , Cambio Climático , Productos Agrícolas/genética , Estaciones del Año
3.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34769464

RESUMEN

Multiple biotic and abiotic stresses challenge plants growing in agricultural fields. Most molecular studies have aimed to understand plant responses to challenges under controlled conditions. However, studies on field-grown plants are scarce, limiting application of the findings in agricultural conditions. In this study, we investigated the composition of apoplastic proteomes of potato cultivar Bintje grown under field conditions, i.e., two field sites in June-August across two years and fungicide treated and untreated, using quantitative proteomics, as well as its activity using activity-based protein profiling (ABPP). Samples were clustered and some proteins showed significant intensity and activity differences, based on their field site and sampling time (June-August), indicating differential regulation of certain proteins in response to environmental or developmental factors. Peroxidases, class II chitinases, pectinesterases, and osmotins were among the proteins more abundant later in the growing season (July-August) as compared to early in the season (June). We did not detect significant differences between fungicide Shirlan treated and untreated field samples in two growing seasons. Using ABPP, we showed differential activity of serine hydrolases and ß-glycosidases under greenhouse and field conditions and across a growing season. Furthermore, the activity of serine hydrolases and ß-glycosidases, including proteins related to biotic stress tolerance, decreased as the season progressed. The generated proteomics data would facilitate further studies aiming at understanding mechanisms of molecular plant physiology in agricultural fields and help applying effective strategies to mitigate biotic and abiotic stresses.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Solanum tuberosum/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Ecosistema , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteoma/análisis , Proteómica/métodos , Solanum tuberosum/crecimiento & desarrollo , Estrés Fisiológico/fisiología
4.
BMC Plant Biol ; 20(1): 120, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32183694

RESUMEN

BACKGROUND: Potato is the third most consumed crop in the world. Breeding for traits such as yield, product quality and pathogen resistance are main priorities. Identifying molecular signatures of these and other important traits is important in future breeding efforts. In this study, a progeny population from a cross between a breeding line, SW93-1015, and a cultivar, Désirée, was studied by trait analysis and RNA-seq in order to develop understanding of segregating traits at the molecular level and identify transcripts with expressional correlation to these traits. Transcript markers with predictive value for field performance applicable under controlled environments would be of great value for plant breeding. RESULTS: A total of 34 progeny lines from SW93-1015 and Désirée were phenotyped for 17 different traits in a field in Nordic climate conditions and controlled climate settings. A master transcriptome was constructed with all 34 progeny lines and the parents through a de novo assembly of RNA-seq reads. Gene expression data obtained in a controlled environment from the 34 lines was correlated to traits by different similarity indices, including Pearson and Spearman, as well as DUO, which calculates the co-occurrence between high and low values for gene expression and trait. Our study linked transcripts to traits such as yield, growth rate, high laying tubers, late and tuber blight, tuber greening and early flowering. We found several transcripts associated to late blight resistance and transcripts encoding receptors were associated to Dickeya solani susceptibility. Transcript levels of a UBX-domain protein was negatively associated to yield and a GLABRA2 expression modulator was negatively associated to growth rate. CONCLUSION: In our study, we identify 100's of transcripts, putatively linked based on expression with 17 traits of potato, representing both well-known and novel associations. This approach can be used to link the transcriptome to traits. We explore the possibility of associating the level of transcript expression from controlled, optimal environments to traits in a progeny population with different methods introducing the application of DUO for the first time on transcriptome data. We verify the expression pattern for five of the putative transcript markers in another progeny population.


Asunto(s)
Rasgos de la Historia de Vida , Fenotipo , Solanum tuberosum/genética , Transcriptoma , Tetraploidía
5.
Plant Dis ; 104(11): 3026-3032, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32830998

RESUMEN

Currently available fungicides against potato late blight are effective but there are concerns about the sustainability of frequent applications and the risks of fungicide resistance. Therefore, we investigated how potassium phosphite can be integrated into late blight control programs with reduced fungicides in field trials. Phosphite was somewhat less effective than the conventional fungicides at suppressing late blight in the foliage, and the tubers contained less starch. However, when we reduced the amount of phosphite and combined it with reduced amounts of conventional fungicides, we observed no differences in disease suppression, total yields, and tuber starch contents compared with the full treatments with conventional fungicides. The amount of phosphite detected in the harvested tubers was linearly associated with the amount of phosphite applied to the foliage. Our analyses indicate that phosphite could replace some fungicides without exceeding the current European Union standards for the maximum residue levels in potato tubers. No phosphite was detected in the starch from the tubers. In 1 of 2 years, early blight (caused by Alternaria solani) was less severe in the phosphite treatments than in the treatments without phosphite. The integration of phosphite into current treatment strategies would reduce the dependence on conventional fungicides.


Asunto(s)
Fosfitos , Phytophthora infestans , Solanum tuberosum , Fosfitos/farmacología , Enfermedades de las Plantas , Almidón
6.
Plant Physiol ; 170(3): 1235-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26628747

RESUMEN

In this study, the metabolic and physiological impacts of an altered microclimate on quality-associated primary and secondary metabolites in grape (Vitis vinifera) 'Sauvignon Blanc' berries was determined in a high-altitude vineyard. The leaf and lateral shoot removal in the bunch zones altered the microclimate by increasing the exposure of the berries. The physical parameters (berry diameter and weight), primary metabolites (sugars and organic acids), as well as bunch temperature and leaf water potential were predominantly not affected by the treatment. The increased exposure led to higher levels of specific carotenoids and volatile terpenoids in the exposed berries, with earlier berry stages reacting distinctly from the later developmental stages. Plastic/nonplastic metabolite responses could be further classified to identify metabolites that were developmentally controlled and/or responded to the treatment in a predictable fashion (assessed over two consecutive vintages). The study demonstrates that grapevine berries exhibit a degree of plasticity within their secondary metabolites and respond physiologically to the increased exposure by increasing metabolites with potential antioxidant activity. Taken together, the data provide evidence that the underlying physiological responses relate to the maintenance of stress pathways by modulating antioxidant molecules in the berries.


Asunto(s)
Vitis/metabolismo , Metabolismo de los Hidratos de Carbono , Carotenoides/metabolismo , Clorofila/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Genes de Plantas , Malatos/metabolismo , Redes y Vías Metabólicas/genética , Microclima , Modelos Biológicos , Hojas de la Planta/metabolismo , Tartratos/metabolismo , Terpenos/metabolismo , Vitis/genética , Vitis/crecimiento & desarrollo , Vino , Xantófilas/metabolismo
7.
J Proteome Res ; 15(2): 638-46, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26704985

RESUMEN

Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that enables precise quantitation of hundreds of peptides in a single run. This technique provides new opportunities for multiplexed protein biomarker measurements. For precision plant breeding, DNA-based markers have been used extensively, but the potential of protein biomarkers has not been exploited. In this work, we developed an SRM marker panel with assays for 104 potato (Solanum tuberosum) peptides selected using univariate and multivariate statistics. Thereafter, using random forest classification, the prediction markers were identified for Phytopthora infestans resistance in leaves, P. infestans resistance in tubers, and plant yield in potato leaf secretome samples. The results suggest that the marker panel has the predictive potential for three traits, two of which have no commercial DNA markers so far. Furthermore, the marker panel was also tested and found to be applicable to potato clones not used during the marker development. The proposed workflow is thus a proof-of-concept for targeted proteomics as an efficient readout in accelerated breeding for complex and agronomically important traits.


Asunto(s)
Fitomejoramiento/métodos , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Solanum tuberosum/metabolismo , Biomarcadores/metabolismo , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Espectrometría de Masas , Análisis Multivariante , Péptidos/metabolismo , Phytophthora infestans/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/microbiología , Solanum tuberosum/genética , Solanum tuberosum/microbiología
8.
Phytopathology ; 106(8): 877-83, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27070426

RESUMEN

Nongenetic inheritance (e.g., transgenerational epigenetic effects) has received increasing interest in recent years, particularly in plants. However, most studies have involved a few model species and relatively little is known about wild species in these respects. We investigated transgenerational induced resistance to infection by the devastating oomycete Phytophthora infestans in Solanum physalifolium, a wild relative of cultivated potato. We treated plants with ß-aminobutyric acid (BABA), a nontoxic compound acting as an inducing agent, or infected plants with P. infestans. BABA treatment reduced lesion size in detached-leaf assays inoculated by P. infestans in two of three tested genotypes, suggesting that resistance to oomycetes can be induced by BABA within a generation not only in crops or model species but also in wild species directly collected from nature. Both BABA treatment and infection in the parental generation reduced lesions in the subsequent generation in one of two genotypes, indicating a transgenerational influence on resistance that varies among genotypes. We did not detect treatment effects on seed traits, indicating the involvement of a mechanism unrelated to maternal effects. In conclusion, our study provides data on BABA induction and nongenetic inheritance of induced resistance in a wild relative of cultivated potato, implying that this factor might be important in the ecological and agricultural landscape.


Asunto(s)
Phytophthora , Enfermedades de las Plantas/microbiología , Solanum/microbiología , Aminobutiratos , Epigénesis Genética , Predisposición Genética a la Enfermedad , Semillas
9.
Int J Mol Sci ; 17(10)2016 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-27706100

RESUMEN

This review provides a current summary of plant resistance inducers (PRIs) that have been successfully used in the Solanaceae plant family to protect against pathogens by activating the plant's own defence. Solanaceous species include many important crops such as potato and tomato. We also present findings regarding the molecular processes after application of PRIs, even if the number of such studies still remains limited in this plant family. In general, there is a lack of patterns regarding the efficiency of induced resistance (IR) both between and within solanaceous species. In many cases, a hypersensitivity-like reaction needs to form in order for the PRI to be efficient. "-Omics" studies have already given insight in the complexity of responses, and can explain some of the differences seen in efficacy of PRIs between and within species as well as towards different pathogens. Finally, examples of field applications of PRIs for solanaceous crops are presented and discussed. We predict that PRIs will play a role in future plant protection strategies in Solanaceae crops if they are combined with other means of disease control in different spatial and temporal combinations.


Asunto(s)
Solanaceae/metabolismo , Aminobutiratos/metabolismo , Aminobutiratos/farmacología , Bacterias/efectos de los fármacos , Productos Agrícolas , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Etilenos/metabolismo , Etilenos/farmacología , Hongos/efectos de los fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Solanaceae/genética , Solanaceae/microbiología
11.
Physiol Plant ; 155(1): 12-20, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25625434

RESUMEN

A biological pathway is the set of molecular entities involved in a given biological process and the interrelations among them. Even though biological pathways have been studied extensively, discovering missing genes in pathways remains a fundamental challenge. Here, we present an easy-to-use tool that allows users to run MORPH (MOdule-guided Ranking of candidate PatHway genes), an algorithm for revealing missing genes in biological pathways, and demonstrate its capabilities. MORPH supports the analysis in tomato, Arabidopsis and the two new species: rice and the newly sequenced potato genome. The new tool, called MORPH-R, is available both as a web server (at http://bioinformatics.psb.ugent.be/webtools/morph/) and as standalone software that can be used locally. In the standalone version, the user can apply the tool to new organisms using any proprietary and public data sources.


Asunto(s)
Vías Biosintéticas/genética , Biología Computacional/métodos , Genes de Plantas/genética , Programas Informáticos , Algoritmos , Arabidopsis/genética , Ontología de Genes , Internet , Solanum lycopersicum/genética , Oryza/genética , Reproducibilidad de los Resultados , Solanum tuberosum/genética
12.
J Proteome Res ; 13(6): 3114-20, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24766612

RESUMEN

High-throughput omics data often contain systematic biases introduced during various steps of sample processing and data generation. As the source of these biases is usually unknown, it is difficult to select an optimal normalization method for a given data set. To facilitate this process, we introduce the open-source tool "Normalyzer". It normalizes the data with 12 different normalization methods and generates a report with several quantitative and qualitative plots for comparative evaluation of different methods. The usefulness of Normalyzer is demonstrated with three different case studies from quantitative proteomics and transcriptomics. The results from these case studies show that the choice of normalization method strongly influences the outcome of downstream quantitative comparisons. Normalyzer is an R package and can be used locally or through the online implementation at http://quantitativeproteomics.org/normalyzer .


Asunto(s)
Programas Informáticos , Interpretación Estadística de Datos , Perfilación de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteoma/genética , Proteoma/metabolismo , Proteómica , Espectrometría de Masas en Tándem
13.
BMC Genomics ; 15: 497, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24947944

RESUMEN

BACKGROUND: In order to get global molecular understanding of one of the most important crop diseases worldwide, we investigated compatible and incompatible interactions between Phytophthora infestans and potato (Solanum tuberosum). We used the two most field-resistant potato clones under Swedish growing conditions, which have the greatest known local diversity of P. infestans populations, and a reference compatible cultivar. RESULTS: Quantitative label-free proteomics of 51 apoplastic secretome samples (PXD000435) in combination with genome-wide transcript analysis by 42 microarrays (E-MTAB-1515) were used to capture changes in protein abundance and gene expression at 6, 24 and 72 hours after inoculation with P. infestans. To aid mass spectrometry analysis we generated cultivar-specific RNA-seq data (E-MTAB-1712), which increased peptide identifications by 17%. Components induced only during incompatible interactions, which are candidates for hypersensitive response initiation, include a Kunitz-like protease inhibitor, transcription factors and an RCR3-like protein. More secreted proteins had lower abundance in the compatible interaction compared to the incompatible interactions. Based on this observation and because the well-characterized effector-target C14 protease follows this pattern, we suggest 40 putative effector targets. CONCLUSIONS: In summary, over 17000 transcripts and 1000 secreted proteins changed in abundance in at least one time point, illustrating the dynamics of plant responses to a hemibiotroph. Half of the differentially abundant proteins showed a corresponding change at the transcript level. Many putative hypersensitive and effector-target proteins were single representatives of large gene families.


Asunto(s)
Interacciones Huésped-Parásitos , Phytophthora infestans , Enfermedades de las Plantas/genética , Proteoma , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Transcriptoma , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Parásitos/genética , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica/métodos , Solanum tuberosum/parasitología
14.
BMC Genomics ; 15: 315, 2014 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-24773703

RESUMEN

BACKGROUND: Induced resistance (IR) can be part of a sustainable plant protection strategy against important plant diseases. ß-aminobutyric acid (BABA) can induce resistance in a wide range of plants against several types of pathogens, including potato infected with Phytophthora infestans. However, the molecular mechanisms behind this are unclear and seem to be dependent on the system studied. To elucidate the defence responses activated by BABA in potato, a genome-wide transcript microarray analysis in combination with label-free quantitative proteomics analysis of the apoplast secretome were performed two days after treatment of the leaf canopy with BABA at two concentrations, 1 and 10 mM. RESULTS: Over 5000 transcripts were differentially expressed and over 90 secretome proteins changed in abundance indicating a massive activation of defence mechanisms with 10 mM BABA, the concentration effective against late blight disease. To aid analysis, we present a more comprehensive functional annotation of the microarray probes and gene models by retrieving information from orthologous gene families across 26 sequenced plant genomes. The new annotation provided GO terms to 8616 previously un-annotated probes. CONCLUSIONS: BABA at 10 mM affected several processes related to plant hormones and amino acid metabolism. A major accumulation of PR proteins was also evident, and in the mevalonate pathway, genes involved in sterol biosynthesis were down-regulated, whereas several enzymes involved in the sesquiterpene phytoalexin biosynthesis were up-regulated. Interestingly, abscisic acid (ABA) responsive genes were not as clearly regulated by BABA in potato as previously reported in Arabidopsis. Together these findings provide candidates and markers for improved resistance in potato, one of the most important crops in the world.


Asunto(s)
Proteómica , Solanum tuberosum/metabolismo , Transcriptoma , Phytophthora/patogenicidad , Solanum tuberosum/genética , Solanum tuberosum/microbiología
15.
BMC Plant Biol ; 14: 254, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25270759

RESUMEN

BACKGROUND: Potato late blight caused by the oomycete pathogen Phytophthora infestans can lead to immense yield loss. We investigated the transcriptome of Solanum tubersoum (cv. Desiree) and characterized the secretome by quantitative proteomics after foliar application of the protective agent phosphite. We also studied the distribution of phosphite in planta after application and tested transgenic potato lines with impaired in salicylic and jasmonic acid signaling. RESULTS: Phosphite had a rapid and transient effect on the transcriptome, with a clear response 3 h after treatment. Strikingly this effect lasted less than 24 h, whereas protection was observed throughout all time points tested. In contrast, 67 secretome proteins predominantly associated with cell-wall processes and defense changed in abundance at 48 h after treatment. Transcripts associated with defense, wounding, and oxidative stress constituted the core of the phosphite response. We also observed changes in primary metabolism and cell wall-related processes. These changes were shown not to be due to phosphate depletion or acidification caused by phosphite treatment. Of the phosphite-regulated transcripts 40% also changed with ß-aminobutyric acid (BABA) as an elicitor, while the defence gene PR1 was only up-regulated by BABA. Although phosphite was shown to be distributed in planta to parts not directly exposed to phosphite, no protection in leaves without direct foliar application was observed. Furthermore, the analysis of transgenic potato lines indicated that the phosphite-mediated resistance was independent of the plant hormones salicylic and jasmonic acid. CONCLUSIONS: Our study suggests that a rapid phosphite-triggered response is important to confer long-lasting resistance against P. infestans and gives molecular understanding of its successful field applications.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fosfitos/farmacología , Phytophthora infestans/fisiología , Enfermedades de las Plantas/inmunología , Solanum tuberosum/efectos de los fármacos , Transcriptoma , Aminobutiratos/farmacología , Ontología de Genes , Fosfitos/análisis , Inmunidad de la Planta , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum/genética , Solanum tuberosum/inmunología
16.
BMC Plant Biol ; 14: 329, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25476999

RESUMEN

BACKGROUND: For most organisms, even if their genome sequence is available, little functional information about individual genes or proteins exists. Several annotation pipelines have been developed for functional analysis based on sequence, 'omics', and literature data. However, researchers encounter little guidance on how well they perform. Here, we used the recently sequenced potato genome as a case study. The potato genome was selected since its genome is newly sequenced and it is a non-model plant even if there is relatively ample information on individual potato genes, and multiple gene expression profiles are available. RESULTS: We show that the automatic gene annotations of potato have low accuracy when compared to a "gold standard" based on experimentally validated potato genes. Furthermore, we evaluate six state-of-the-art annotation pipelines and show that their predictions are markedly dissimilar (Jaccard similarity coefficient of 0.27 between pipelines on average). To overcome this discrepancy, we introduce a simple GO structure-based algorithm that reconciles the predictions of the different pipelines. We show that the integrated annotation covers more genes, increases by over 50% the number of highly co-expressed GO processes, and obtains much higher agreement with the gold standard. CONCLUSIONS: We find that different annotation pipelines produce different results, and show how to integrate them into a unified annotation that is of higher quality than each single pipeline. We offer an improved functional annotation of both PGSC and ITAG potato gene models, as well as tools that can be applied to additional pipelines and improve annotation in other organisms. This will greatly aid future functional analysis of '-omics' datasets from potato and other organisms with newly sequenced genomes. The new potato annotations are available with this paper.


Asunto(s)
Genoma de Planta , Anotación de Secuencia Molecular , Solanum tuberosum/genética
17.
Sci Rep ; 14(1): 10012, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693138

RESUMEN

Beta-glucosidases catalyze the hydrolysis of the glycosidic bonds of cellobiose, producing glucose, which is a rate-limiting step in cellulose biomass degradation. In industrial processes, ß-glucosidases that are tolerant to glucose and stable under harsh industrial reaction conditions are required for efficient cellulose hydrolysis. In this study, we report the molecular cloning, Escherichia coli expression, and functional characterization of a ß-glucosidase from the gene, CelGH3_f17, identified from metagenomics libraries of an Ethiopian soda lake. The CelGH3_f17 gene sequence contains a glycoside hydrolase family 3 catalytic domain (GH3). The heterologous expressed and purified enzyme exhibited optimal activity at 50 °C and pH 8.5. In addition, supplementation of 1 M salt and 300 mM glucose enhanced the ß-glucosidase activity. Most of the metal ions and organic solvents tested did not affect the ß-glucosidase activity. However, Cu2+ and Mn2+ ions, Mercaptoethanol and Triton X-100 reduce the activity of the enzyme. The studied ß-glucosidase enzyme has multiple industrially desirable properties including thermostability, and alkaline, salt, and glucose tolerance.


Asunto(s)
Biomasa , Lagos , beta-Glucosidasa , beta-Glucosidasa/genética , beta-Glucosidasa/metabolismo , beta-Glucosidasa/química , Lagos/microbiología , Metagenómica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Metagenoma , Clonación Molecular , Estabilidad de Enzimas , Hidrólisis , Concentración de Iones de Hidrógeno , Celulosa/metabolismo , Temperatura , Glucosa/metabolismo
18.
Heliyon ; 10(4): e26719, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38434028

RESUMEN

There is a general drive to reduce pesticide use owing to the potential negative effects of pesticides on the environment and human health. The EU Commission, for example, through its "Farm to Fork Strategy," has proposed to decrease the use of hazardous chemical pesticides by 50% by 2030. In addition, smallholder farmers in low-income countries do not always follow pesticide safety precautions. This necessitates the introduction of low-risk crop protection strategies also suited for these farmers. Agricultural biologicals can substitute for, or at least partially replace hazardous chemical pesticides. While the market for and use of biologicals is growing quickly in industrialized countries, this practice remains limited in sub-Saharan Africa. To understand the reason behind the low adoption of biologicals, this study examined the knowledge, attitudes, and practices toward biologicals among 150 smallholder farmers in the Chole district in Ethiopia. All farmers used chemical pesticides and/or inorganic fertilizers to protect crops, improve yields, and comply with government regulations. The use of biologicals was, however, restricted to one group of biologicals, bio-fertilizers, which approximately 60% of farmers used, and no use of biologicals for plant protection was reported. Even though the understanding of the concept of biologicals was deemed high among respondents, the majority (90%) did not identify biologicals as safer alternatives to conventional agricultural inputs. More than half of the respondents (54%) did not recommend biologicals as safer alternatives to their colleagues. Nevertheless, even if the responding farmers did not perceive biologicals as risk-free, they had a positive attitude towards biologicals when it came to producing healthy food and increasing crop yields and incomes. In comparison to the positive attitude, farmers' knowledge and practice of biologicals were generally low; thus, efforts are needed to create awareness among farmers.

19.
Plant Physiol Biochem ; 199: 107713, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37126903

RESUMEN

Cassava (Manihot esculenta Crantz) is a predominant food security crop in several developing countries. Its storage roots, rich in carbohydrate, are deficient in essential micronutrients, including provitamin A carotenoids. Increasing carotenoid content in cassava storage roots is important to reduce the incidence of vitamin A deficiency, a public health problem in sub-Saharan Africa. However, cassava improvement advances slowly, mainly due to limited information on the molecular factors influencing ß-carotene accumulation in cassava. To address this problem, we performed comparative transcriptomic and untargeted metabolic analyses of roots and leaves of eleven African cassava landraces ranging from white to deep yellow colour, to uncover regulators of carotenoid biosynthesis and accumulation with conserved function in yellow cassava roots. Sequence analysis confirmed the presence of a mutation, known to influence ß-carotene content, in PSY transcripts of deep yellow but not of pale yellow genotypes. We identified genes and metabolites with expression and accumulation levels significantly associated with ß-carotene content. Particularly an increased activity of the abscisic acid catabolism pathway together with a reduced amount of L-carnitine, may be related to the carotenoid pathway flux, higher in yellow than in white storage roots. In fact, NCED_3.1 was specifically expressed at a lower level in all yellow genotypes suggesting that it could be a potential target for increasing carotenoid accumulation in cassava. These results expand the knowledge on metabolite compositions and molecular mechanisms influencing carotenoid biosynthesis and accumulation in cassava and provide novel information for biotechnological applications and genetic improvement of cassava with high nutritional values.


Asunto(s)
Manihot , beta Caroteno , beta Caroteno/análisis , Vitamina A/análisis , Vitamina A/metabolismo , Vitaminas/análisis , Vitaminas/metabolismo , Manihot/genética , Manihot/metabolismo , Transcriptoma/genética , Carotenoides/metabolismo , Verduras , Metaboloma
20.
GM Crops Food ; 14(1): 1-17, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36987578

RESUMEN

Gene technologies, such as transgenesis and new breeding techniques (NBTs), expand the toolbox for plant breeding. Many countries in Africa, however, have long been seen as "slow adopters" of gene technologies for several reasons, one being the lack of, or overly restrictive, biosafety regulatory frameworks. This is sometimes attributed to the influence of the precautionary-oriented EU biosafety policies. This study analyses and compares the biosafety regulatory frameworks and their implementation in Kenya, Nigeria and Uganda, and in the EU member state Sweden. The focus is on (1) the structure of the biosafety regulatory frameworks including the scope of the legislation, (2) the duration and cost of regulatory authorization for field trials with genetically modified (GM) plants, and (3) the regulatory approach to NBT products, i.e. to what extent NBT products are subject to the provisions of the biosafety regulatory framework. The data was collected through studying relevant legal and policy documents as well as interviewing regulatory officers and researchers in the respective countries. We found that the regulatory procedures in the selected countries are relatively straightforward, while the costs and duration may present a challenge. The regulatory approach to NBT products differ between the selected African countries and Sweden, the latter which follows EU regulations. The results are discussed in terms of the impact the regulatory developments in these four jurisdictions may have on international R&D collaborations involving the use of gene technologies and we also weigh the results against the common conception that Europe exerts a heavy influence on African countries in this technology field.


Asunto(s)
Biotecnología , Contención de Riesgos Biológicos , Biotecnología/métodos , Nigeria , Kenia , Uganda , Suecia , Fitomejoramiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA