Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
BMC Plant Biol ; 24(1): 38, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38191321

RESUMEN

Milling quality (MQ) and grain shape (GS) of rice (Oryza sativa L.) are correlated traits, both determine farmers' final profit. More than one population under multiple environments may provide valuable information for breeding selection on these MQ-GS correlations. However, suitable analytical methods for reciprocal introgression lines with linkage map for this kind of correlation remains unclear. In this study, our major tasks were (1) to provide a set of reciprocal introgression lines (composed of two BC2RIL populations) suitable for mapping by linkage mapping using markers/bins with physical positions; (2) to test the mapping effects of different methods by using MQ-GS correlation dissection as sample case; (3) to perform genetic and breeding simulation on pyramiding favorite alleles of QTLs for representative MQ-GS traits. Finally, with four analysis methods and data collected under five environments, we identified about 28.4 loci on average for MQ-GS traits. Notably, 52.3% of these loci were commonly detected by different methods and eight loci were novel. There were also nine regions harboring loci for different MQ-GS traits which may be underlying the MQ-GS correlations. Background independent (BI) loci were also found for each MQ and GS trait. All these information may provide useful resources for rice molecular breeding.


Asunto(s)
Oryza , Oryza/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Alelos , Grano Comestible/genética
2.
Plant Cell ; 33(8): 2538-2561, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34467412

RESUMEN

A 1D/2D genome-wide association study strategy was adopted to investigate the genetic systems underlying the reciprocal adaptation of rice (Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole-genome sequencing and large-scale phenotyping data of 701 rice accessions and 23 diverse Xoo strains. Forty-seven Xoo virulence-related genes and 318 rice quantitative resistance genes (QR-genes) mainly located in 41 genomic regions, and genome-wide interactions between the detected virulence-related genes and QR genes were identified, including well-known resistance genes/virulence genes plus many previously uncharacterized ones. The relationship between rice and Xoo was characterized by strong differentiation among Xoo races corresponding to the subspecific differentiation of rice, by strong shifts toward increased resistance/virulence of rice/Xoo populations and by rich genetic diversity at the detected rice QR-genes and Xoo virulence genes, and by genome-wide interactions between many rice QR-genes and Xoo virulence genes in a multiple-to-multiple manner, presumably resulting either from direct protein-protein interactions or from genetic epistasis. The observed complex genetic interaction system between rice and Xoo likely exists in other crop-pathogen systems that would maintain high levels of diversity at their QR-loci/virulence-loci, resulting in dynamic coevolutionary consequences during their reciprocal adaptation.


Asunto(s)
Interacciones Huésped-Patógeno/genética , Oryza/genética , Oryza/microbiología , Xanthomonas/genética , Adaptación Fisiológica/genética , Resistencia a la Enfermedad/genética , Regulación Bacteriana de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma Bacteriano , Genoma de Planta , Estudio de Asociación del Genoma Completo , Desequilibrio de Ligamiento , Filogenia , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Virulencia/genética , Secuenciación Completa del Genoma , Xanthomonas/patogenicidad
3.
Theor Appl Genet ; 137(2): 37, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294550

RESUMEN

KEY MESSAGE: Estimating genetic gains and formulating a future salinity elite breeding panel for rice pave the way for developing better high-yielding salinity tolerant lines with enhanced genetic gains. Genetic gain is a crucial parameter to check the breeding program's success and help optimize future breeding strategies for enhanced genetic gains. To estimate the genetic gains in IRRI's salinity breeding program and identify the best genotypes based on high breeding values for grain yield (kg/ha), we analyzed the historical data from the trials conducted in the IRRI, Philippines and Bangladesh. A two-stage mixed-model approach accounting for experimental design factors and a relationship matrix was fitted to obtain the breeding values for grain yield and estimate genetic trends. A positive genetic trend of 0.1% per annum with a yield advantage of 1.52 kg/ha was observed in IRRI, Philippines. In Bangladesh, we observed a genetic gain of 0.31% per annum with a yield advantage of 14.02 kg/ha. In the released varieties, we observed a genetic gain of 0.12% per annum with a 2.2 kg/ha/year yield advantage in the IRRI, Philippines. For the Bangladesh dataset, a genetic gain of 0.14% per annum with a yield advantage of 5.9 kg/ha/year was observed in the released varieties. Based on breeding values for grain yield, a core set of the top 145 genotypes with higher breeding values of > 2400 kg/ha in the IRRI, Philippines, and > 3500 kg/ha in Bangladesh with a reliability of > 0.4 were selected to develop the elite breeding panel. Conclusively, a recurrent selection breeding strategy integrated with novel technologies like genomic selection and speed breeding is highly required to achieve higher genetic gains in IRRI's salinity breeding programs.


Asunto(s)
Oryza , Oryza/genética , Reproducibilidad de los Resultados , Salinidad , Fitomejoramiento , Bangladesh , Grano Comestible
4.
Nature ; 557(7703): 43-49, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695866

RESUMEN

Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within- and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.


Asunto(s)
Productos Agrícolas/clasificación , Productos Agrícolas/genética , Variación Genética , Genoma de Planta/genética , Oryza/clasificación , Oryza/genética , Asia , Evolución Molecular , Genes de Plantas/genética , Genética de Población , Genómica , Haplotipos , Mutación INDEL/genética , Filogenia , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética
5.
Theor Appl Genet ; 137(1): 3, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085288

RESUMEN

KEY MESSAGE: Schemes that use genomic prediction outperform others, updating testers increases hybrid genetic gain, and larger population sizes tend to have higher genetic gain and less depletion of genetic variance One of the most common methods to improve hybrid performance is reciprocal recurrent selection (RRS). Genomic prediction (GP) can be used to increase genetic gain in RRS by reducing cycle length, but it is also possible to use GP to predict single-cross hybrid performance. The impact of the latter method on genetic gain has yet to be previously reported. Therefore, we compared via stochastic simulations various phenotypic and genomics-assisted RRS breeding schemes which used GP to predict hybrid performance rather than reducing cycle length, which allows minimal changes to traditional breeding schemes. We also compared three breeding sizes scenarios that varied the number of genotypes crossed within heterotic pools, the number of genotypes crossed between heterotic pools, the number of hybrids evaluated, and the number of genomic predicted hybrids. Our results demonstrated that schemes that used genomic prediction of hybrid performance outperformed the others for the average interpopulation hybrid population and the best hybrid performance. Furthermore, updating the testers increased hybrid genetic gain with phenotypic RRS. As expected, the largest breeding size tested had the highest rates of genetic improvement and the lowest decrease in additive genetic variance due to the drift. Therefore, this study demonstrates the usefulness of single-cross prediction, which may be easier to implement than rapid-cycling RRS and cyclical updating of testers. We also reiterate that larger population sizes tend to have higher genetic gain and less depletion of genetic variance.


Asunto(s)
Hibridación Genética , Oryza , Humanos , Oryza/genética , Modelos Genéticos , Fitomejoramiento , Genómica/métodos , Padres
6.
Physiol Mol Plant Pathol ; 122: 101916, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36405863

RESUMEN

Sheath blight (ShB) is one of the most serious diseases in rice, leading to severe yield losses globally. In our study, we evaluated a total of 63 rice genotypes for resistance against sheath blight disease by artificial inoculation over two seasons under field conditions and studied the weather parameters associated with disease incidence. Based on two years of testing, 23 genotypes were found moderately resistant, 38 were moderately susceptible, and 2 exhibited a susceptible reaction to sheath blight disease. Among the specific four genotypes (IC283139, IC283041, IC283038, and IC283023) of the moderately resistant group exhibited less disease reaction in comparison with check variety Tetep. Further, the correlation of percent disease index (PDI) with weather parameters revealed negative associations between PDI and maximum temperature, minimum temperature, low rainfall and the positive association with maximum relative humidity (RH) suggest that very low temperature or high precipitation might have a negative impact on pathogen establishment. In addition, the sheath blight-linked SSRs were assessed using distance and model-based approaches, results of both the models revealed that genotypes distinguished the resistant population from the susceptible one. From the output of two years of principal component analysis, two genotypes from each group of moderately resistant, moderately susceptible and susceptible were studied for their biochemical reaction against the sheath blight pathogen. The biochemical study revealed that the accumulation of defense and antioxidant enzymes, namely, polyphenol oxidase, peroxidase, total phenol, phenylalanine ammonia-lyase, catalase, and superoxide dismutase, were higher in moderately resistant genotypes, but was observed to be lower in moderately susceptible and susceptible genotypes. The statistical analysis revealed the enzyme activities (defense and antioxidant) exhibited a strong negative correlation with area under the disease progress curve (AUDPC) and influence of weather parameter RH. This demonstrates that the environment factor RH plays a major role in imparting the resistance mechanism by decreasing the enzymes activities and increasing PDI. This study found that the identified novel resistant genotype (IC283139) with purple stem base demonstrated improved resistance against sheath blight infection through a defense response and the use of antioxidant machinery.

7.
Int J Mol Sci ; 22(11)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199720

RESUMEN

The underground reserve (root) has been an uncharted research territory with its untapped genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with efficient root system architecture (RSA) has great potential to increase resource-use efficiency and grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this review, we tried to mine the available research information on the direct-seeded rice (DSR) root system to highlight the requirements of different root traits such as root architecture, length, number, density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous transporters for their respective nutrients and stress-responsive factors have been identified and validated under different circumstances. Identifying the desired QTLs and transporters underlying these traits and then designing an ideal root architecture can help in developing a suitable DSR cultivar and aid in further advancement in this direction.


Asunto(s)
Adaptación Fisiológica/fisiología , Oryza/fisiología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/fisiología , Semillas/fisiología , Germinación/fisiología , Oryza/genética , Oryza/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Semillas/genética , Semillas/crecimiento & desarrollo
8.
Plant Biotechnol J ; 18(1): 57-67, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31124256

RESUMEN

Hybrid breeding is the main strategy for improving productivity in many crops, especially in rice and maize. Genomic hybrid breeding is a technology that uses whole-genome markers to predict future hybrids. Predicted superior hybrids are then field evaluated and released as new hybrid cultivars after their superior performances are confirmed. This will increase the opportunity of selecting true superior hybrids with minimum costs. Here, we used genomic best linear unbiased prediction to perform hybrid performance prediction using an existing rice population of 1495 hybrids. Replicated 10-fold cross-validations showed that the prediction abilities on ten agronomic traits ranged from 0.35 to 0.92. Using the 1495 rice hybrids as a training sample, we predicted six agronomic traits of 100 hybrids derived from half diallel crosses involving 21 parents that are different from the parents of the hybrids in the training sample. The prediction abilities were relatively high, varying from 0.54 (yield) to 0.92 (grain length). We concluded that the current population of 1495 hybrids can be used to predict hybrids from seemingly unrelated parents. Eventually, we used this training population to predict all potential hybrids of cytoplasm male sterile lines from 3000 rice varieties from the 3K Rice Genome Project. Using a breeding index combining 10 traits, we identified the top and bottom 200 predicted hybrids. SNP genotypes of the training population and parameters estimated from this training population are available for general uses and further validation in genomic hybrid prediction of all potential hybrids generated from all varieties of rice.


Asunto(s)
Hibridación Genética , Oryza/genética , Fitomejoramiento , Productos Agrícolas/genética , Genoma de Planta , Genómica , Modelos Genéticos , Polimorfismo de Nucleótido Simple
9.
Theor Appl Genet ; 133(5): 1427-1442, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31915875

RESUMEN

KEY MESSAGE: The "Green Super Rice" (GSR) project aims to fundamentally transform crop production techniques and promote the development of green agriculture based on functional genomics and breeding of GSR varieties by whole-genome breeding platforms. Rice (Oryza sativa L.) is one of the leading food crops of the world, and the safe production of rice plays a central role in ensuring food security. However, the conflicts between rice production and environmental resources are becoming increasingly acute. For this reason, scientists in China have proposed the concept of Green Super Rice for promoting resource-saving and environment-friendly rice production, while still achieving a yield increase and quality improvement. GSR is becoming one of the major goals for agricultural research and crop improvement worldwide, which aims to mine and use vital genes associated with superior agronomic traits such as high yield, good quality, nutrient efficiency, and resistance against insects and stresses; establish genomic breeding platforms to breed and apply GSR; and set up resource-saving and environment-friendly cultivation management systems. GSR has been introduced into eight African and eight Asian countries and has contributed significantly to rice cultivation and food security in these countries. This article mainly describes the GSR concept and recent research progress, as well as the significant achievements in GSR breeding and its application.


Asunto(s)
Genoma de Planta , Oryza/clasificación , Oryza/genética , Fitomejoramiento/normas , Plantas Modificadas Genéticamente/genética , Sitios de Carácter Cuantitativo , África , Asia , Oryza/crecimiento & desarrollo , Fenotipo , Plantas Modificadas Genéticamente/crecimiento & desarrollo
10.
Theor Appl Genet ; 133(4): 1337, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32076749

RESUMEN

The article Genomic Breeding of Green Super Rice Varieties and Their Deployment in Asia and Africa.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA