Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biochemistry ; 63(9): 1067-1074, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38619104

RESUMEN

NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA , Proteína Homeótica Nanog , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/química , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Fosforilación , Humanos , Estabilidad Proteica , Unión Proteica , Estereoisomerismo
2.
Nat Methods ; 18(12): 1496-1498, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34845388

RESUMEN

The rapid pace of innovation in biological imaging and the diversity of its applications have prevented the establishment of a community-agreed standardized data format. We propose that complementing established open formats such as OME-TIFF and HDF5 with a next-generation file format such as Zarr will satisfy the majority of use cases in bioimaging. Critically, a common metadata format used in all these vessels can deliver truly findable, accessible, interoperable and reusable bioimaging data.


Asunto(s)
Biología Computacional/instrumentación , Biología Computacional/normas , Metadatos , Microscopía/instrumentación , Microscopía/normas , Programas Informáticos , Benchmarking , Biología Computacional/métodos , Compresión de Datos , Bases de Datos Factuales , Almacenamiento y Recuperación de la Información , Internet , Microscopía/métodos , Lenguajes de Programación , SARS-CoV-2
3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999934

RESUMEN

Biomolecular condensates (BMCs) exhibit physiological and pathological relevance in biological systems. Both liquid and solid condensates play significant roles in the spatiotemporal regulation and organization of macromolecules and their biological activities. Some pathological solid condensates, such as Lewy Bodies and other fibrillar aggregates, have been hypothesized to originate from liquid condensates. With the prevalence of BMCs having functional and dysfunctional roles, it is imperative to understand the mechanism of biomolecular condensate formation and initiation. Using the low-complexity domain (LCD) of heterogenous ribonuclear protein A1 (hnRNPA1) as our model, we monitored initial assembly events using dynamic light scattering (DLS) while modulating pH and salt conditions to perturb macromolecule and condensate properties. We observed the formation of nanometer-sized BMCs (nano-condensates) distinct from protein monomers and micron-sized condensates. We also observed that conditions that solubilize micron-sized protein condensates do not solubilize nano-condensates, indicating that the balance of forces that stabilize nano-condensates and micron-sized condensates are distinct. These findings provide insight into the forces that drive protein phase separation and potential nucleation structures of macromolecular condensation.


Asunto(s)
Dispersión Dinámica de Luz , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/química , Dominios Proteicos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Concentración de Iones de Hidrógeno
4.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834792

RESUMEN

Cellular deposition of protein aggregates, one of the hallmarks of neurodegeneration, disrupts cellular functions and leads to neuronal death. Mutations, posttranslational modifications, and truncations are common molecular underpinnings in the formation of aberrant protein conformations that seed aggregation. The major proteins involved in neurodegeneration include amyloid beta (Aß) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, and TAR DNA-binding protein (TDP-43) in amyotrophic lateral sclerosis (ALS). These proteins are described as intrinsically disordered and possess enhanced ability to partition into biomolecular condensates. In this review, we discuss the role of protein misfolding and aggregation in neurodegenerative diseases, specifically highlighting implications of changes to the primary/secondary (mutations, posttranslational modifications, and truncations) and the quaternary/supramolecular (oligomerization and condensation) structural landscapes for the four aforementioned proteins. Understanding these aggregation mechanisms provides insights into neurodegenerative diseases and their common underlying molecular pathology.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Proteínas Intrínsecamente Desordenadas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas tau
5.
Semin Cell Dev Biol ; 99: 78-85, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29753880

RESUMEN

Intrinsically disordered proteins as computationally predicted account for ∼1/3 of eukaryotic proteomes, are involved in a plethora of biological functions, and have been linked to several human diseases as a result of their dysfunctions. Here, we present a picture wherein an energetic continuum describes protein structural and conformational propensities, ranging from the hyperstable folded proteins on one end to the hyperdestabilized and sometimes functionally disordered proteins on the other. We distinguish between proteins that are folding-competent but disordered because of marginal stability and those that are disordered due mainly to the absence of folding code-completing structure-determining interactions, and postulate that disordered proteins that are unstructured by way of partial population of protein denatured states represent a sizable proportion of the proteome.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Ligandos , Conformación Proteica , Pliegue de Proteína , Proteoma/química , Proteoma/metabolismo
6.
Nucleic Acids Res ; 48(5): 2621-2642, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31863590

RESUMEN

Transposable elements (TEs) comprise a large proportion of long non-coding RNAs (lncRNAs). Here, we employed CRISPR to delete a short interspersed nuclear element (SINE) in Malat1, a cancer-associated lncRNA, to investigate its significance in cellular physiology. We show that Malat1 with a SINE deletion forms diffuse nuclear speckles and is frequently translocated to the cytoplasm. SINE-deleted cells exhibit an activated unfolded protein response and PKR and markedly increased DNA damage and apoptosis caused by dysregulation of TDP-43 localization and formation of cytotoxic inclusions. TDP-43 binds stronger to Malat1 without the SINE and is likely 'hijacked' by cytoplasmic Malat1 to the cytoplasm, resulting in the depletion of nuclear TDP-43 and redistribution of TDP-43 binding to repetitive element transcripts and mRNAs encoding mitotic and nuclear-cytoplasmic regulators. The SINE promotes Malat1 nuclear retention by facilitating Malat1 binding to HNRNPK, a protein that drives RNA nuclear retention, potentially through direct interactions of the SINE with KHDRBS1 and TRA2A, which bind to HNRNPK. Losing these RNA-protein interactions due to the SINE deletion likely creates more available TDP-43 binding sites on Malat1 and subsequent TDP-43 aggregation. These results highlight the significance of lncRNA TEs in TDP-43 proteostasis with potential implications in both cancer and neurodegenerative diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteostasis/genética , ARN Largo no Codificante/genética , Elementos de Nucleótido Esparcido Corto/genética , Apoptosis , Línea Celular , Citoplasma/metabolismo , Daño del ADN , Estrés del Retículo Endoplásmico , Activación Enzimática , Dosificación de Gen , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Mitosis , Modelos Biológicos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia/genética , eIF-2 Quinasa
7.
Nat Chem Biol ; 20(4): 399-400, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326412
8.
Proc Natl Acad Sci U S A ; 115(23): 5962-5967, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784777

RESUMEN

The phosphoenolpyruvate-dependent phosphotransferase system (PTS) transports sugar into bacteria and phosphorylates the sugar for metabolic consumption. The PTS is important for the survival of bacteria and thus a potential target for antibiotics, but its mechanism of sugar uptake and phosphorylation remains unclear. The PTS is composed of multiple proteins, and the membrane-embedded Enzyme IIC (EIIC) component transports sugars across the membrane. Crystal structures of two members of the glucose superfamily of EIICs, bcChbC and bcMalT, were solved in the inward-facing and outward-facing conformations, and the structures suggest that sugar translocation could be achieved by movement of a structured domain that contains the sugar-binding site. However, different conformations have not been captured on the same transporter to allow precise description of the conformational changes. Here we present a crystal structure of bcMalT trapped in an inward-facing conformation by a mercury ion that bridges two strategically placed cysteine residues. The structure allows direct comparison of the outward- and inward-facing conformations and reveals a large rigid-body motion of the sugar-binding domain and other conformational changes that accompany the rigid-body motion. All-atom molecular dynamics simulations show that the inward-facing structure is stable with or without the cross-linking. The conformational changes were further validated by single-molecule Föster resonance energy transfer (smFRET). Combined, these results establish the elevator-type mechanism of transport in the glucose superfamily of EIIC transporters.


Asunto(s)
Proteínas Bacterianas , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Bacillus cereus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Transporte Biológico , Cisteína/química , Cisteína/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/ultraestructura , Fosforilación , Conformación Proteica
9.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375595

RESUMEN

Influenza A virus (IAV) nonstructural protein 1 (NS1), a potent antagonist of the host immune response, is capable of interacting with RNA and a wide range of cellular proteins. NS1 consists of an RNA-binding domain (RBD) and an effector domain (ED) separated by a flexible linker region (LR). H5N1-NS1 has a characteristic 5-residue deletion in the LR, with either G (minor group) or E (major group) at the 71st position, and non-H5N1-NS1 contains E71 with an intact linker. Based on the orientation of the ED with respect to the RBD, previous crystallographic studies have shown that minor group H5N1-NS1(G71), a non-H5N1-NS1 [H6N6-NS1(E71)], and the LR deletion mutant H6N6-NS1(Δ80-84/E71) mimicking the major group H5N1-NS1 exhibit "open," "semiopen," and "closed" conformations, respectively, suggesting that NS1 exhibits a strain-dependent conformational preference. Here we report the first crystal structure of a naturally occurring H5N1-NS1(E71) and show that it adopts an open conformation similar to that of the minor group of H5N1-NS1 [H5N1-NS1(G71)]. We also show that H6N6-NS1(Δ80-84/E71) under a different crystallization condition and H6N6-NS1(Δ80-84/G71) also exhibit open conformations, suggesting that NS1 can adopt an open conformation irrespective of E or G at the 71st position. Our single-molecule fluorescence resonance energy transfer (FRET) analysis to investigate the conformational preference of NS1 in solution showed that all NS1 constructs predominantly exist in an open conformation. Further, our coimmunoprecipitation and binding studies showed that they all bind to cellular factors with similar affinities. Taken together, our studies suggest that NS1 exhibits strain-independent structural plasticity that allows it to interact with a wide variety of cellular ligands during viral infection.IMPORTANCE IAV is responsible for several pandemics over the last century and continues to infect millions annually. The frequent rise in drug-resistant strains necessitates exploring novel targets for developing antiviral drugs that can reduce the global burden of influenza infection. Because of its critical role in the replication and pathogenesis of IAV, nonstructural protein 1 (NS1) is a potential target for developing antivirals. Previous studies suggested that NS1 adopts strain-dependent "open," "semiopen," and "closed" conformations. Here we show, based on three crystal structures, that NS1 irrespective of strain differences can adopt an open conformation. We further show that NS1 from different strains primarily exists in an open conformation in solution and binds to cellular proteins with a similar affinity. Together, our findings suggest that conformational polymorphism facilitated by a flexible linker is intrinsic to NS1, and this may be the underlying factor allowing NS1 to bind several cellular factors during IAV replication.


Asunto(s)
Virus de la Influenza A/química , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Ligandos , Mutación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
10.
Nature ; 498(7454): 390-4, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23783631

RESUMEN

Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.


Asunto(s)
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Animales , Anisotropía , Proteína de Unión a CREB/química , Proteína de Unión a CREB/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/metabolismo , Termodinámica , Factores de Transcripción p300-CBP/química
11.
Ear Hear ; 40(5): 1187-1196, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30870241

RESUMEN

OBJECTIVES: We sought to investigate whether children referred to our audiology clinic with a complaint of listening difficulty, that is, suspected of auditory processing disorder (APD), have difficulties localizing sounds in noise and whether they have reduced benefit from spatial release from masking. DESIGN: Forty-seven typically hearing children in the age range of 7 to 17 years took part in the study. Twenty-one typically developing (TD) children served as controls, and the other 26 children, referred to our audiology clinic with listening problems, were the study group: suspected APD (sAPD). The ability to localize a speech target (the word "baseball") was measured in quiet, broadband noise, and speech-babble in a hemi-anechoic chamber. Participants stood at the center of a loudspeaker array that delivered the target in a diffused noise-field created by presenting independent noise from four loudspeakers spaced 90° apart starting at 45°. In the noise conditions, the signal-to-noise ratio was varied between -12 and 0 dB in 6-dB steps by keeping the noise level constant at 66 dB SPL and varying the target level. Localization ability was indexed by two metrics, one assessing variability in lateral plane [lateral scatter (Lscat)] and the other accuracy in the front/back dimension [front/back percent correct (FBpc)]. Spatial release from masking (SRM) was measured using a modified version of the Hearing in Noise Test (HINT). In this HINT paradigm, speech targets were always presented from the loudspeaker at 0°, and a single noise source was presented either at 0°, 90°, or 270° at 65 dB A. The SRM was calculated as the difference between the 50% correct HINT speech reception threshold obtained when both speech and noise were collocated at 0° and when the noise was presented at either 90° or 270°. RESULTS: As expected, in both groups, localization in noise improved as a function of signal-to-noise ratio. Broadband noise caused significantly larger disruption in FBpc than in Lscat when compared with speech babble. There were, however, no group effects or group interactions, suggesting that the children in the sAPD group did not differ significantly from TD children in either localization metric (Lscat and FBpc). While a significant SRM was observed in both groups, there were no group effects or group interactions. Collectively, the data suggest that children in the sAPD group did not differ significantly from the TD group for either binaural measure investigated in the study. CONCLUSIONS: As is evident from a few poor performers, some children with listening difficulties may have difficulty in localizing sounds and may not benefit from spatial separation of speech and noise. However, the heterogeneity in APD and the variability in our data do not support the notion that localization is a global APD problem. Future studies that employ a case study design might provide more insights.


Asunto(s)
Trastornos de la Percepción Auditiva/fisiopatología , Enmascaramiento Perceptual , Localización de Sonidos/fisiología , Adolescente , Estudios de Casos y Controles , Niño , Femenino , Humanos , Masculino , Ruido , Relación Señal-Ruido , Prueba del Umbral de Recepción del Habla
12.
Int J Audiol ; 58(11): 733-737, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31195854

RESUMEN

Objective: The purpose of this study was to examine developmental trends in spectral ripple discrimination (SRD) and to compare the performance of typically developing children to children with auditory processing disorder (APD). Study design: Cross-sectional study. Study sample: Fifteen children with APD, as well as 17 typically developing children and 14 adults reporting no listening or academic difficulties participated. Results: Typically developing children showed poor SRD thresholds compared to adults, indicating prolonged maturation of spectral shape recognition. Both typically developing children and APD children showed a maturational trend in SRD, but a General Linear Model fit to their thresholds showed that children with APD displayed SRD thresholds that were significantly poorer than those of typically developing children when controlling for age. This suggests that in APD children, SRD maturation lags behind typically developing children. Conclusion: Poor spectral ripple discrimination may explain some of the listening difficulties experienced by children with APD.


Asunto(s)
Percepción Auditiva/fisiología , Trastornos de la Percepción Auditiva/fisiopatología , Umbral Auditivo/fisiología , Desarrollo Infantil/fisiología , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Modelos Lineales , Masculino , Adulto Joven
13.
Biochemistry ; 57(50): 6822-6826, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30520303

RESUMEN

Ribonucleoprotein (RNP) condensations through liquid-liquid phase separation play vital roles in the dynamic formation-dissolution of stress granules (SGs). These condensations are, however, usually assumed to be linked to pathologic fibrillation. Here, we show that physiologic condensation and pathologic fibrillation of RNPs are independent processes that can be unlinked with the chemical chaperone trimethylamine N-oxide (TMAO). Using the low-complexity disordered domain of the archetypical SG-protein TDP-43 as a model system, we show that TMAO enhances RNP liquid condensation yet inhibits protein fibrillation. Our results demonstrate effective decoupling of physiologic condensation from pathologic aggregation and suggest that selective targeting of protein fibrillation (without altering condensation) can be employed as a therapeutic strategy for RNP aggregation-associated degenerative disorders.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Extracción Líquido-Líquido , Metilaminas/química , Metilaminas/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutación , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo , Respuesta de Proteína Desplegada
14.
Eur Biophys J ; 47(1): 89-94, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29080139

RESUMEN

Protein thermodynamic stability is intricately linked to cellular function, and altered stability can lead to dysfunction and disease. The linear extrapolation model (LEM) is commonly used to obtain protein unfolding free energies ([Formula: see text]) by extrapolation of solvent denaturation data to zero denaturant concentration. However, for some proteins, different denaturants result in non-coincident LEM-derived [Formula: see text] values, raising questions about the inherent assumption that the obtained [Formula: see text] values are intrinsic to the protein. Here, we used single-molecule FRET measurements to better understand such discrepancies by directly probing changes in the dimensions of the protein G B1 domain (GB1), a well-studied protein folding model, upon urea and guanidine hydrochloride denaturation. A comparison of the results for the two denaturants suggests denaturant-specific structural energetics in the GB1 denatured ensemble, revealing a role of the denatured state in the variable thermodynamic behavior of proteins.


Asunto(s)
Proteínas Bacterianas/química , Desnaturalización Proteica/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Guanidina/farmacología , Dominios Proteicos , Termodinámica , Urea/farmacología
15.
Int J Mol Sci ; 19(5)2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29734651

RESUMEN

Neuropathological aggregates of the intrinsically disordered microtubule-associated protein Tau are hallmarks of Alzheimer’s disease, with decades of research devoted to studying the protein’s aggregation properties both in vitro and in vivo. Recent demonstrations that Tau is capable of undergoing liquid-liquid phase separation (LLPS) reveal the possibility that protein-enriched phase separated compartments could serve as initiation sites for Tau aggregation, as shown for other amyloidogenic proteins, such as the Fused in Sarcoma protein (FUS) and TAR DNA-binding protein-43 (TDP-43). Although truncation, mutation, and hyperphosphorylation have been shown to enhance Tau LLPS and aggregation, the effect of hyperacetylation on Tau aggregation remains unclear. Here, we investigate how the acetylation of Tau affects its potential to undergo phase separation and aggregation. Our data show that the hyperacetylation of Tau by p300 histone acetyltransferase (HAT) disfavors LLPS, inhibits heparin-induced aggregation, and impedes access to LLPS-initiated microtubule assembly. We propose that Tau acetylation prevents the toxic effects of LLPS-dependent aggregation but, nevertheless, contributes to Tau loss-of-function pathology by inhibiting Tau LLPS-mediated microtubule assembly.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Agregación Patológica de Proteínas/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Proteínas tau/metabolismo , Acetilación , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Heparina/química , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Extracción Líquido-Líquido , Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilación , Agregación Patológica de Proteínas/genética , Factores de Transcripción p300-CBP/genética , Proteínas tau/química , Proteínas tau/genética
16.
Int J Mol Sci ; 19(12)2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30518054

RESUMEN

Sox2 is a pioneer transcription factor that initiates cell fate reprogramming through locus-specific differential regulation. Mechanistically, it was assumed that Sox2 achieves its regulatory diversity via heterodimerization with partner transcription factors. Here, utilizing single-molecule fluorescence spectroscopy, we show that Sox2 alone can modulate DNA structural landscape in a dosage-dependent manner. We propose that such stoichiometric tuning of regulatory DNAs is crucial to the diverse biological functions of Sox2, and represents a generic mechanism of conferring functional plasticity and multiplicity to transcription factors.


Asunto(s)
ADN/química , Dominios HMG-Box , Conformación de Ácido Nucleico , Factores de Transcripción SOXB1/química , Imagen Individual de Molécula , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Regiones Promotoras Genéticas/genética , Unión Proteica
17.
Methods ; 96: 27-32, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26476368

RESUMEN

High content screening (HCS) experiments create a classic data management challenge-multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of "final" results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org.


Asunto(s)
Biología Computacional/estadística & datos numéricos , Minería de Datos/estadística & datos numéricos , Ensayos Analíticos de Alto Rendimiento/estadística & datos numéricos , Almacenamiento y Recuperación de la Información/estadística & datos numéricos , Programas Informáticos , Biología Computacional/métodos , Conjuntos de Datos como Asunto , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Difusión de la Información , Almacenamiento y Recuperación de la Información/métodos , Internet
18.
Angew Chem Int Ed Engl ; 56(41): 12590-12593, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28833982

RESUMEN

Transactivation response element (TAR) DNA-binding protein 43 (TDP-43) misfolding is implicated in several neurodegenerative diseases characterized by aggregated protein inclusions. Misfolding is believed to be mediated by both the N- and C-terminus of TDP-43; however, the mechanistic basis of the contribution of individual domains in the process remained elusive. Here, using single-molecule fluorescence and ensemble biophysical techniques, and a wide range of pH and temperature conditions, we show that TDP-43NTD is thermodynamically stable, well-folded and undergoes reversible oligomerization. We propose that, in full-length TDP-43, association between folded N-terminal domains enhances the propensity of the intrinsically unfolded C-terminal domains to drive pathological aggregation.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/química , Pliegue de Proteína , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Agregación Patológica de Proteínas/patología , Dominios Proteicos , Multimerización de Proteína , Termodinámica
19.
J Acoust Soc Am ; 139(1): 247-62, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26827021

RESUMEN

Children as young as 5 yr old localize sounds as accurately as adults in quiet in the frontal hemifield. However, children's ability to localize in noise and in the front/back (F/B) dimension are scantily studied. To address this, the first part of this study investigated localization-in-noise ability of children vs young adults in two maskers: broadband noise (BBN) and speech-babble (SB) at three signal-to-noise ratios: -12, -6, and 0 dB. In the second part, relationship between binaural medial olivocochlear system (MOC) function and localization-in-noise was investigated. In both studies, 21 children and 21 young adults participated. Results indicate, while children are able to differentiate sounds arriving in the F/B dimension on par with adults in quiet and in BBN, larger differences were found for SB. Accuracy of children's localization in noise (for both maskers) in the lateral plane was also poorer than adults'. Significant differences in binaural MOC interaction (mBIC; the difference between the sum of two monaural- and binaural-MOC strength) between adults and children were also found. For reasons which are not clear, adult F/B localization in BBN correlates better with mBIC while children's F/B localization in SB correlated better with binaural MOC strength.


Asunto(s)
Cóclea/fisiología , Núcleo Olivar/fisiología , Localización de Sonidos/fisiología , Estimulación Acústica , Adolescente , Adulto , Niño , Métodos Epidemiológicos , Femenino , Humanos , Masculino , Emisiones Otoacústicas Espontáneas/fisiología , Enmascaramiento Perceptual/fisiología , Percepción Espacial/fisiología , Percepción del Habla/fisiología , Adulto Joven
20.
Mamm Genome ; 26(9-10): 441-7, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26223880

RESUMEN

Imaging data are used in the life and biomedical sciences to measure the molecular and structural composition and dynamics of cells, tissues, and organisms. Datasets range in size from megabytes to terabytes and usually contain a combination of binary pixel data and metadata that describe the acquisition process and any derived results. The OMERO image data management platform allows users to securely share image datasets according to specific permissions levels: data can be held privately, shared with a set of colleagues, or made available via a public URL. Users control access by assigning data to specific Groups with defined membership and access rights. OMERO's Permission system supports simple data sharing in a lab, collaborative data analysis, and even teaching environments. OMERO software is open source and released by the OME Consortium at www.openmicroscopy.org.


Asunto(s)
Difusión de la Información , Imagen Molecular , Programas Informáticos , Animales , Internet , Edición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA