Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Phys Rev Lett ; 120(2): 023901, 2018 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-29376703

RESUMEN

Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (∼284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.

2.
Phys Rev Lett ; 119(18): 184802, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219607

RESUMEN

In linac-driven free-electron lasers, colliders, and energy recovery linacs, a common way to compress the electron bunch to kiloampere level is based upon the implementation of a magnetic dispersive element that converts particle energy deviation into a path-length difference. Nonlinearities of such a process are usually compensated by enabling a high harmonic rf structure properly tuned in amplitude and phase. This approach is however not straightforward, e.g., in C-band and X-band linacs. In this Letter we demonstrate that the longitudinal self-induced field excited by the electron beam itself is able to linearize the compression process without any use of high harmonic rf structure. The method is implemented at the FERMI linac, with the resulting high quality beam used to drive the seeded free-electron laser during user experiments.

3.
Phys Rev Lett ; 119(7): 073203, 2017 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-28949652

RESUMEN

Single-photon laser-enabled Auger decay (spLEAD) is predicted theoretically [B. Cooper and V. Averbukh, Phys. Rev. Lett. 111, 083004 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.083004] and here we report its first experimental observation in neon. Using coherent, bichromatic free-electron laser pulses, we detect the process and coherently control the angular distribution of the emitted electrons by varying the phase difference between the two laser fields. Since spLEAD is highly sensitive to electron correlation, this is a promising method for probing both correlation and ultrafast hole migration in more complex systems.

4.
Phys Rev Lett ; 118(3): 033202, 2017 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-28157370

RESUMEN

The hitherto unexplored two-photon doubly excited states [Ne^{*}(2p^{-1}3s)]_{2} were experimentally identified using the seeded, fully coherent, intense extreme ultraviolet free-electron laser FERMI. These states undergo ultrafast interatomic Coulombic decay (ICD), which predominantly produces singly ionized dimers. In order to obtain the rate of ICD, the resulting yield of Ne_{2}^{+} ions was recorded as a function of delay between the extreme ultraviolet pump and UV probe laser pulses. The extracted lifetimes of the long-lived doubly excited states, 390(-130/+450) fs, and of the short-lived ones, less than 150 fs, are in good agreement with ab initio quantum mechanical calculations.

5.
Phys Rev Lett ; 117(27): 276806, 2016 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-28084773

RESUMEN

Ne clusters (∼5000 atoms) were resonantly excited (2p→3s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.

6.
J Synchrotron Radiat ; 22(3): 485-91, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25931057

RESUMEN

FERMI is a seeded free-electron laser (FEL) facility located at the Elettra laboratory in Trieste, Italy, and is now in user operation with its first FEL line, FEL-1, covering the wavelength range between 100 and 20 nm. The second FEL line, FEL-2, a high-gain harmonic generation double-stage cascade covering the wavelength range 20-4 nm, has also completed commissioning and the first user call has been recently opened. An overview of the typical operating modes of the facility is presented.

7.
Phys Rev Lett ; 114(1): 013901, 2015 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-25615469

RESUMEN

We report the first experimental evidence of enhancement of self-amplified spontaneous emission, due to the use of an optical klystron. In this free-electron laser scheme, a relativistic electron beam passes through two undulators, separated by a dispersive section. The latter converts the electron-beam energy modulation produced in the first undulator in density modulation, thus enhancing the free-electron laser gain. The experiment has been carried out at the FERMI facility in Trieste. Powerful radiation has been produced in the extreme ultraviolet range, with an intensity a few orders of magnitude larger than in pure self-amplified spontaneous emission mode. Data have been benchmarked with an existing theoretical model.

8.
Phys Rev Lett ; 115(21): 214801, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26636852

RESUMEN

Laser-heater systems are essential tools to control and optimize high-gain free-electron lasers (FELs) working in the x-ray wavelength range. Indeed, these systems induce a controllable increase of the energy spread of the electron bunch. The heating suppresses longitudinal microbunching instability which otherwise would limit the FEL performance. Here, we demonstrate that, through the action of the microbunching instability, a long-wavelength modulation of the electron beam induced by the laser heater at low energy can persist until the beam entrance into the undulators. This coherent longitudinal modulation is exploited to control the FEL spectral properties, in particular, multicolor extreme-ultraviolet FEL pulses can be generated through a frequency mixing of the modulations produced by the laser heater and the seed laser in the electron beam. We present an experimental demonstration of this novel configuration carried out at the FERMI FEL.

9.
Phys Rev Lett ; 112(11): 114802, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702379

RESUMEN

Laser-heater systems have been demonstrated to be an important component for the accelerators that drive high gain free electron laser (FEL) facilities. These heater systems suppress longitudinal microbunching instabilities by inducing a small and controllable slice energy spread to the electron beam. For transversely uniform heating, the energy spread augmentation is characterized by a non-Gaussian distribution. In this Letter, we demonstrate experimentally that in addition to suppression of the microbunching instability, the laser heater-induced energy distribution can be preserved to the FEL undulator entrance, significantly impacting the performance of high-gain harmonic generation (HGHG) FELs, especially at soft x-ray wavelengths. In particular, we show that the FEL intensity has several local maxima as a function of the induced heating caused by the non-Gaussian energy distribution together with a strong enhancement of the power at high harmonics relative to that expected for an electron beam with an equivalent Gaussian energy spread at an undulator entrance. These results suggest that a single stage HGHG FEL can produce scientifically interesting power levels at harmonic numbers m ≥ 25 and with current seed laser technology could reach output photon energies above 100 eV or greater.

10.
Phys Rev Lett ; 112(4): 044801, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24580459

RESUMEN

Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.


Asunto(s)
Electrones , Rayos Láser , Aceleradores de Partículas/instrumentación , Modelos Teóricos , Dinámicas no Lineales
11.
Phys Rev Lett ; 113(24): 247202, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25541801

RESUMEN

Thin film magnetization reversal without applying external fields is an attractive perspective for applications in sensors and devices. One way to accomplish it is by fine-tuning the microstructure of a magnetic substrate via temperature control, as in the case of a thin Fe layer deposited on a MnAs/GaAs(001) template. This work reports a time-resolved resonant scattering study exploring the magnetic and structural properties of the Fe/MnAs system, using a 100 fs optical laser pulse to trigger local temperature variations and a 100 fs x-ray free-electron laser pulse to probe the induced magnetic and structural dynamics. The experiment provides direct evidence that a single optical laser pulse can reverse the Fe magnetization locally. It reveals that the time scale of the magnetization reversal is slower than that of the MnAs structural transformations triggered by the optical pulse, which take place after a few picoseconds already.

12.
Opt Express ; 19(11): 10619-24, 2011 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-21643316

RESUMEN

Frequency pulling is a well-known phenomenon in standard laser physics, leading to a shift of the laser frequency when the cavity and maximum gain frequencies are detuned. In this letter we present the first experimental demonstration of frequency pulling in single-pass free-electron lasers. Measurements are performed using the single-pass free-electron laser installed on the Elettra storage ring.

13.
Phys Rev Lett ; 107(8): 084801, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21929170

RESUMEN

Tunable polarization over a wide spectral range is a required feature of light sources employed to investigate the properties of local symmetry in matter. In this Letter, we provide the first experimental characterization of the polarization of the harmonic light produced by a free-electron laser and demonstrate a method to obtain free-electron laser harmonics with tunable polarization. Experimental results are successfully compared with theory. Our findings can be expected to have a deep impact on the design and realization of experiments requiring full control of light polarization.

14.
Sci Rep ; 10(1): 5059, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193416

RESUMEN

The optimal performance of high-brightness free-electron lasers (FELs) is limited by the microbunching instability, which can cause variations in both the slice energy spread and longitudinal profile of electron beams. In this paper, we perform 2D Fourier analysis of the full bunch longitudinal phase space, such that modulations in both planes can be studied simultaneously. Unlike the standard 1D analysis, this method is able to reveal modulations in a folded phase space, which would otherwise remain uncovered. Additionally, the plasma oscillation between energy and density modulations is also revealed by this method. The damping of the microbunching instability, through the use of a laser heater, is also analysed with this technique. We confirm a mitigation of the amplitude of modulation and a red-shift of the microbunching frequency as the energy spread added increases. As an outcome of this work, a systematic experimental comparison of the development of the instability in the presence of different compression schemes is here presented for the first time.

15.
Chaos ; 18(3): 033108, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19045446

RESUMEN

A plausible model for coherent perception is the synchronization of chaotically distributed neural spike trains over wide cortical areas. A recently introduced propensity criterion provides a tool for a quantitative comparison of different neuron models in terms of their ability to synchronize to an applied perturbation. We explore the propensity of several systems and indicate the requirements to be satisfied by a plausible candidate for modeling neuronal activity. Our results show that the conflicting requirements of stability and sensitivity leading to high propensity to synchronization can be satisfied by a strongly nonuniform attractor made of two distinct regions: a saddle focus plus a sufficiently separated saddle node.


Asunto(s)
Potenciales de Acción/fisiología , Relojes Biológicos/fisiología , Encéfalo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Animales , Simulación por Computador , Humanos
16.
Sci Rep ; 8(1): 11661, 2018 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076346

RESUMEN

We demonstrate that emission of coherent transition radiation by a ∼1 GeV energy-electron beam passing through an Al foil is enhanced in intensity and extended in frequency spectral range, by the energy correlation established along the beam by coherent synchrotron radiation wakefield, in the presence of a proper electron optics in the beam delivery system. Analytical and numerical models, based on experimental electron beam parameters collected at the FERMI free electron laser (FEL), predict transition radiation with two intensity peaks at ∼0.3 THz and ∼1.5 THz, and extending up to 8.5 THz with intensity above 20 dB w.r.t. the main peak. Up to 80-µJ pulse energy integrated over the full bandwidth is expected at the source, and in agreement with experimental pulse energy measurements. By virtue of its implementation in an FEL beam dump line, this work promises dissemination of user-oriented multi-THz beamlines parasitic and self-synchronized to EUV and x-ray FELs.

17.
Nat Commun ; 9(1): 4659, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30405105

RESUMEN

Short wavelength free-electron lasers (FELs), providing pulses of ultrahigh photon intensity, have revolutionized spectroscopy on ionic targets. Their exceptional photon flux enables multiple photon absorptions within a single femtosecond pulse, which in turn allows for deep insights into the photoionization process itself as well as into evolving ionic states of a target. Here we employ ultraintense pulses from the FEL FERMI to spectroscopically investigate the sequential emission of electrons from gaseous, atomic argon in the neutral as well as the ionic ground state. A pronounced forward-backward symmetry breaking of the angularly resolved emission patterns with respect to the light propagation direction is experimentally observed and theoretically explained for the region of the Cooper minimum, where the asymmetry of electron emission is strongly enhanced. These findings aim to originate a better understanding of the fundamentals of photon momentum transfer in ionic matter.

18.
Sci Rep ; 5: 13531, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26314764

RESUMEN

Polarization control is a key feature of light generated by short-wavelength free-electron lasers. In this work, we report the first experimental characterization of the polarization properties of an extreme ultraviolet high gain free-electron laser operated with crossed polarized undulators. We investigate the average degree of polarization and the shot-to-shot stability and we analyze aspects such as existing possibilities for controlling and switching the polarization state of the emitted light. The results are in agreement with predictions based on Gaussian beams propagation.

19.
Biol Psychiatry ; 14(3): 473-84, 1979 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-476232

RESUMEN

Pretherapeutic urinary excretion of 3-methoxy-4-hydroxyphenylglycol (MHPG) was studied in 25 primary depressed patients. The results indicate that: (i) There exists a wide variability among primary depressives with respect to MHPG excretion. (ii) Age of onset together with polarity of the disease may account for the nonhomogeneous division of the patients according to MHPG levels. (iii). The other variables considered, with the possible exception of motor activity, do not explain the dichotomy between high or normal and low MHPG levels, even though it is possible that they influence MHPG excretion to some extent, with the consequent possibility of errors in subclassification of the patients at the boundaries between the two groups. (iv) The correlation between motor retardation and low MHPG excretion is positive, but probably due to a frequent association between this motricity state and primary depression of bipolar early onset type. (v) Treatments with chlorimipramine and, to a lesser degree of specificity, with amitriptyline are particularly indicated in patients with normal or high MHPG. Some practical and theoretical implications deriving from these data are briefly discussed.


Asunto(s)
Amitriptilina/uso terapéutico , Clomipramina/uso terapéutico , Depresión/orina , Glicoles/orina , Metoxihidroxifenilglicol/orina , Adulto , Anciano , Trastorno Bipolar/tratamiento farmacológico , Trastorno Bipolar/psicología , Trastorno Bipolar/orina , Depresión/tratamiento farmacológico , Depresión/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(6 Pt 2): 066211, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15244712

RESUMEN

We give experimental evidence that a delayed feedback control strategy is able to efficiently enhance the coherence of an experimental self-sustained chaotic oscillator obtained from a CO2 laser with electro-optical feedback. We demonstrate that coherence control is achieved for various choices of the delay time in the feedback control, including values that would lead to the stabilization of an unstable periodic orbit embedded within the chaotic attractor. The relationship between the two processes is discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA