Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Microbiol ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018471

RESUMEN

The micronutrient iron is essential for phytoplankton growth due to its central role in a wide variety of key metabolic processes including photosynthesis and nitrate assimilation. As a result of scarce bioavailable iron in seawater, marine primary productivity is often iron-limited with future iron supplies remaining uncertain. Although evolutionary constraints resulted in high cellular iron requirements, phytoplankton evolved diverse mechanisms that enable uptake of multiple forms of iron, storage of iron over short and long timescales, and modulation of their iron requirement under stress. Genomics continues to increase our understanding of iron-related proteins that are homologous to those characterized in other model organisms, while recently, molecular and cell biology is revealing unique genes and processes with connections to iron acquisition or use. Moreover, there are an increasing number of examples showing the interplay between iron uptake and extracellular processes such as boundary layer chemistry and microbial interactions.

2.
Proc Natl Acad Sci U S A ; 121(6): e2204075121, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38306482

RESUMEN

Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte Phaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12 response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.


Asunto(s)
Diatomeas , Haptophyta , Haptophyta/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Ecosistema , Fitoplancton/metabolismo , Diatomeas/genética , Vitaminas/metabolismo , Micronutrientes/metabolismo
3.
Plant Physiol ; 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38796833

RESUMEN

Recent global marine lipidomic analysis reveals a strong relationship between ocean temperature and phytoplanktonic abundance of omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which are essential for human nutrition and primarily sourced from phytoplankton in marine food webs. In phytoplanktonic organisms, EPA may play a major role in regulating the phase transition temperature of membranes, while the function of DHA remains unexplored. In the oleaginous diatom Phaeodactylum tricornutum, DHA is distributed mainly on extraplastidial phospholipids, which is very different from the EPA enriched in thylakoid lipids. Here, CRISPR/Cas9-mediated knockout of delta-5 elongase (ptELO5a), which encodes a delta-5 elongase (ELO5) catalyzing the elongation of EPA to synthesize DHA, led to a substantial interruption of DHA synthesis in P. tricornutum. The ptELO5a mutants showed some alterations in transcriptome and glycerolipidomes, including membrane lipids and triacylglycerols under normal temperature (22°C), and were more sensitive to elevated temperature (28°C) than wild type. We conclude that PtELO5a-mediated synthesis of small amounts of DHA has indispensable functions in regulating membrane lipids, indirectly contributing to storage lipid accumulation, and maintaining thermomorphogenesis in P. tricornutum. This study also highlights the significance of DHA synthesis and lipid composition for environmental adaptation of P. tricornutum.

4.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35110408

RESUMEN

Domoic acid (DA), the causative agent of amnesic shellfish poisoning, is produced by select organisms within two distantly related algal clades: planktonic diatoms and red macroalgae. The biosynthetic pathway to isodomoic acid A was recently solved in the harmful algal bloom-forming diatom Pseudonitzschia multiseries, establishing the genetic basis for the global production of this potent neurotoxin. Herein, we sequenced the 507-Mb genome of Chondria armata, the red macroalgal seaweed from which DA was first isolated in the 1950s, identifying several copies of the red algal DA (rad) biosynthetic gene cluster. The rad genes are organized similarly to the diatom DA biosynthesis cluster in terms of gene synteny, including a cytochrome P450 (CYP450) enzyme critical to DA production that is notably absent in red algae that produce the simpler kainoid neurochemical, kainic acid. The biochemical characterization of the N-prenyltransferase (RadA) and kainoid synthase (RadC) enzymes support a slightly altered DA biosynthetic model in C. armata via the congener isodomoic acid B, with RadC behaving more like the homologous diatom enzyme despite higher amino acid similarity to red algal kainic acid synthesis enzymes. A phylogenetic analysis of the rad genes suggests unique origins for the red macroalgal and diatom genes in their respective hosts, with native eukaryotic CYP450 neofunctionalization combining with the horizontal gene transfer of N-prenyltransferases and kainoid synthases to establish DA production within the algal lineages.


Asunto(s)
Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Ácido Kaínico/análogos & derivados , Neurotoxinas/metabolismo , Rhodophyta/metabolismo , Evolución Biológica , Vías Biosintéticas/genética , Diatomeas/genética , Diatomeas/metabolismo , Floraciones de Algas Nocivas/fisiología , Ácido Kaínico/metabolismo , Familia de Multigenes/genética , Neurotoxinas/genética , Filogenia , Intoxicación por Mariscos/metabolismo
5.
Appl Environ Microbiol ; : e0108324, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041797

RESUMEN

Oil spills are a frequent perturbation to the marine environment that has rapid and significant impacts on the local microbiome. Previous studies have shown that exposure to synthetic dispersant alone did not enhance heterotrophic microbial activity or oxidation rates of specific hydrocarbon components but increased the abundance of some taxa (e.g., Colwellia). In contrast, exposure to oil, but not dispersants, increased the abundance of other taxa (e.g., Marinobacter) and stimulated hydrocarbon oxidation rates. Here, we advance these findings by interpreting metatranscriptomic data from this experiment to explore how and why specific components of the microbial community responded to distinct organic carbon exposure regimes. Dispersant alone was selected for a unique community and for dominant organisms that reflected treatment- and time-dependent responses. Dispersant amendment also led to diverging functional profiles among the different treatments. Similarly, oil alone was selected for a community that was distinct from treatments amended with dispersants. The presence of oil and dispersants with added nutrients led to substantial differences in microbial responses, likely suggesting increased fitness driven by the presence of additional inorganic nutrients. The oil-only additions led to a marked increase in the expression of phages, prophages, transposable elements, and plasmids (PPTEPs), suggesting that aspects of microbial community response to oil are driven by the "mobilome," potentially through viral-associated regulation of metabolic pathways in ciliates and flagellates that would otherwise throttle the microbial community through grazing.IMPORTANCEMicrocosm experiments simulated the April 2010 Deepwater Horizon oil spill by applying oil and synthetic dispersants (Corexit EC9500A and EC9527A) to deep ocean water samples. The exposure regime revealed severe negative alterations in the treatments' heterotrophic microbial activity and hydrocarbon oxidation rates. We expanded these findings by exploring metatranscriptomic signatures of the microbial communities during the chemical amendments in the microcosm experiments. Here we report how dominant organisms were uniquely associated with treatment- and time-dependent trajectories during the exposure regimes; nutrient availability was a significant factor in driving changes in metatranscriptomic responses. Remarkable signals associated with PPTEPs showed the potential role of mobilome and viral-associated survival responses. These insights underscore the time-dependent environmental perturbations of fragile marine environments under oil and anthropogenic stress.

6.
New Phytol ; 241(4): 1543-1558, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38031462

RESUMEN

Lysophosphatidic acid acyltransferases (LPAATs) catalyze the formation of phosphatidic acid (PA), a central metabolite in both prokaryotic and eukaryotic organisms for glycerolipid biosynthesis. Phaeodactylum tricornutum contains at least two plastid-localized LPAATs (ptATS2a and ptATS2b), but their roles in lipid synthesis remain unknown. Both ptATS2a and ptATS2b could complement the high temperature sensitivity of the bacterial plsC mutant deficient in LPAAT. In vitro enzyme assays showed that they prefer lysophosphatidic acid over other lysophospholipids. ptATS2a is localized in the plastid inner envelope membrane and CRISPR/Cas9-generated ptATS2a mutants showed compromised cell growth, significantly changed plastid and extra-plastidial membrane lipids at nitrogen-replete condition and reduced triacylglycerols (TAGs) under nitrogen-depleted condition. ptATS2b is localized in thylakoid membranes and its knockout led to reduced growth rate and TAG content but slightly altered molecular composition of membrane lipids. The changes in glycerolipid profiles are consistent with the role of both LPAATs in the sn-2 acylation of sn-1-acyl-glycerol-3-phosphate substrates harboring 20:5 at the sn-1 position. Our findings suggest that both LPAATs are important for membrane lipids and TAG biosynthesis in P. tricornutum and further highlight that 20:5-Lyso-PA is likely involved in the massive import of 20:5 back to the plastid to feed plastid glycerolipid syntheses.


Asunto(s)
Aciltransferasas , Lípidos de la Membrana , Triglicéridos , Aciltransferasas/metabolismo , Plastidios/metabolismo , Ácidos Fosfatidicos , Nitrógeno
7.
Nature ; 555(7697): 534-537, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539640

RESUMEN

In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.


Asunto(s)
Carbonatos/metabolismo , Diatomeas/metabolismo , Hierro/metabolismo , Transferrina/metabolismo , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Transporte Biológico , Diatomeas/genética , Endocitosis , Evolución Molecular , Genoma/genética , Humanos , Concentración de Iones de Hidrógeno , Fitoplancton/clasificación , Fitoplancton/genética , Fitoplancton/metabolismo , Agua de Mar/química
8.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301906

RESUMEN

The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient -0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia's increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling.


Asunto(s)
Cambio Climático , Diatomeas/fisiología , Ecosistema , Océanos y Mares , Eutrofización , Regulación de la Expresión Génica , Complejos de Proteína Captadores de Luz/metabolismo , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Fitoplancton , Plastocianina
10.
Nat Methods ; 17(5): 481-494, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32251396

RESUMEN

Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


Asunto(s)
ADN/administración & dosificación , Eucariontes/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Biología Marina , Modelos Biológicos , Transformación Genética , Biodiversidad , Ecosistema , Ambiente , Eucariontes/clasificación , Especificidad de la Especie
11.
Appl Environ Microbiol ; 89(7): e0031823, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37318344

RESUMEN

Oysters play an important role in coastal ecology and are a globally popular seafood source. However, their filter-feeding lifestyle enables coastal pathogens, toxins, and pollutants to accumulate in their tissues, potentially endangering human health. While pathogen concentrations in coastal waters are often linked to environmental conditions and runoff events, these do not always correlate with pathogen concentrations in oysters. Additional factors related to the microbial ecology of pathogenic bacteria and their relationship with oyster hosts likely play a role in accumulation but are poorly understood. In this study, we investigated whether microbial communities in water and oysters were linked to accumulation of Vibrio parahaemolyticus, Vibrio vulnificus, or fecal indicator bacteria. Site-specific environmental conditions significantly influenced microbial communities and potential pathogen concentrations in water. Oyster microbial communities, however, exhibited less variability in microbial community diversity and accumulation of target bacteria overall and were less impacted by environmental differences between sites. Instead, changes in specific microbial taxa in oyster and water samples, particularly in oyster digestive glands, were linked to elevated levels of potential pathogens. For example, increased levels of V. parahaemolyticus were associated with higher relative abundances of cyanobacteria, which could represent an environmental vector for Vibrio spp. transport, and with decreased relative abundance of Mycoplasma and other key members of the oyster digestive gland microbiota. These findings suggest that host and microbial factors, in addition to environmental variables, may influence pathogen accumulation in oysters. IMPORTANCE Bacteria in the marine environment cause thousands of human illnesses annually. Bivalves are a popular seafood source and are important in coastal ecology, but their ability to concentrate pathogens from the water can cause human illness, threatening seafood safety and security. To predict and prevent disease, it is critical to understand what causes pathogenic bacteria to accumulate in bivalves. In this study, we examined how environmental factors and host and water microbial communities were linked to potential human pathogen accumulation in oysters. Oyster microbial communities were more stable than water communities, and both contained the highest concentrations of Vibrio parahaemolyticus at sites with warmer temperatures and lower salinities. High oyster V. parahaemolyticus concentrations corresponded with abundant cyanobacteria, a potential vector for transmission, and a decrease in potentially beneficial oyster microbes. Our study suggests that poorly understood factors, including host and water microbiota, likely play a role in pathogen distribution and pathogen transmission.


Asunto(s)
Bivalvos , Ostreidae , Vibrio parahaemolyticus , Vibrio vulnificus , Animales , Humanos , Agua , Ostreidae/microbiología , Bacterias/genética
12.
Nature ; 541(7638): 536-540, 2017 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-28092920

RESUMEN

The Southern Ocean houses a diverse and productive community of organisms. Unicellular eukaryotic diatoms are the main primary producers in this environment, where photosynthesis is limited by low concentrations of dissolved iron and large seasonal fluctuations in light, temperature and the extent of sea ice. How diatoms have adapted to this extreme environment is largely unknown. Here we present insights into the genome evolution of a cold-adapted diatom from the Southern Ocean, Fragilariopsis cylindrus, based on a comparison with temperate diatoms. We find that approximately 24.7 per cent of the diploid F. cylindrus genome consists of genetic loci with alleles that are highly divergent (15.1 megabases of the total genome size of 61.1 megabases). These divergent alleles were differentially expressed across environmental conditions, including darkness, low iron, freezing, elevated temperature and increased CO2. Alleles with the largest ratio of non-synonymous to synonymous nucleotide substitutions also show the most pronounced condition-dependent expression, suggesting a correlation between diversifying selection and allelic differentiation. Divergent alleles may be involved in adaptation to environmental fluctuations in the Southern Ocean.


Asunto(s)
Aclimatación/genética , Frío , Diatomeas/genética , Evolución Molecular , Genoma/genética , Genómica , Alelos , Dióxido de Carbono/metabolismo , Oscuridad , Diatomeas/metabolismo , Congelación , Perfilación de la Expresión Génica , Flujo Genético , Cubierta de Hielo , Hierro/metabolismo , Tasa de Mutación , Océanos y Mares , Filogenia , Recombinación Genética , Transcriptoma/genética
13.
Environ Microbiol ; 24(11): 5408-5424, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36222155

RESUMEN

The exchange of metabolites mediates algal and bacterial interactions that maintain ecosystem function. Yet, while thousands of metabolites are produced, only a few molecules have been identified in these associations. Using the ubiquitous microalgae Pseudo-nitzschia sp., as a model, we employed an untargeted metabolomics strategy to assign structural characteristics to the metabolites that distinguished specific diatom-microbiome associations. We cultured five species of Pseudo-nitzschia, including two species that produced the toxin domoic acid, and examined their microbiomes and metabolomes. A total of 4826 molecular features were detected by tandem mass spectrometry. Only 229 of these could be annotated using available mass spectral libraries, but by applying new in silico annotation tools, characterization was expanded to 2710 features. The metabolomes of the Pseudo-nitzschia-microbiome associations were distinct and distinguished by structurally diverse nitrogen compounds, ranging from simple amines and amides to cyclic compounds such as imidazoles, pyrrolidines and lactams. By illuminating the dark metabolomes, this study expands our capacity to discover new chemical targets that facilitate microbial partnerships and uncovers the chemical diversity that underpins algae-bacteria interactions.


Asunto(s)
Diatomeas , Microbiota , Diatomeas/metabolismo , Espectrometría de Masas en Tándem , Metaboloma
14.
New Phytol ; 233(4): 1797-1812, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34882804

RESUMEN

Long-chain acyl-CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil-producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1-ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl-CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.


Asunto(s)
Diatomeas , Sistemas CRISPR-Cas/genética , Coenzima A/genética , Coenzima A/metabolismo , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo
15.
J Phycol ; 58(1): 36-54, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34817069

RESUMEN

Diatom metacommunities are structured by environmental, historical, and spatial factors that are often attributed to organism dispersal. In the McMurdo Sound region (MSR) of Antarctica, wind connects aquatic habitats through delivery of inorganic and organic matter. We evaluated the dispersal of diatoms in aeolian material and its relation to the regional diatom metacommunity using light microscopy and 18S rRNA high-throughput sequencing. The concentration of diatoms ranged from 0 to 8.76 * 106 valves · g-1 dry aeolian material. Up to 15% of whole cells contained visible protoplasm, indicating that up to 3.43 * 104 potentially viable individuals could be dispersed in a year to a single 2 -cm2 site. Diatom DNA and RNA was detected at each site, reinforcing the likelihood that we observed dispersal of viable diatoms. Of the 50 known morphospecies in the MSR, 72% were identified from aeolian material using microscopy. Aeolian community composition varied primarily by site. Meanwhile, each aeolian community was comprised of morphospecies found in aquatic communities from the same lake basin. These results suggest that aeolian diatom dispersal in the MSR is spatially structured, is predominantly local, and connects local aquatic habitats via a shared species pool. Nonetheless, aeolian community structure was distinct from that of aquatic communities, indicating that intrahabitat dispersal and environmental filtering also underlie diatom metacommunity dynamics. The present study confirms that a large number of diatoms are passively dispersed by wind across a landscape characterized by aeolian processes, integrating the regional flora and contributing to metacommunity structure and landscape connectivity.


Asunto(s)
Diatomeas , Regiones Antárticas , Ecosistema , Lagos , Viento
16.
Proc Natl Acad Sci U S A ; 116(47): 23609-23617, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685631

RESUMEN

Iron uptake by diatoms is a biochemical process with global biogeochemical implications. In large regions of the surface ocean diatoms are both responsible for the majority of primary production and frequently experiencing iron limitation of growth. The strategies used by these phytoplankton to extract iron from seawater constrain carbon flux into higher trophic levels and sequestration into sediments. In this study we use reverse genetic techniques to target putative iron-acquisition genes in the model pennate diatom Phaeodactylum tricornutum We describe components of a reduction-dependent siderophore acquisition pathway that relies on a bacterial-derived receptor protein and provides a viable alternative to inorganic iron uptake under certain conditions. This form of iron uptake entails a close association between diatoms and siderophore-producing organisms during low-iron conditions. Homologs of these proteins are found distributed across diatom lineages, suggesting the significance of siderophore utilization by diatoms in the marine environment. Evaluation of specific proteins enables us to confirm independent iron-acquisition pathways in diatoms and characterize their preferred substrates. These findings refine our mechanistic understanding of the multiple iron-uptake systems used by diatoms and help us better predict the influence of iron speciation on taxa-specific iron bioavailability.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Diatomeas/metabolismo , FMN Reductasa/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Sideróforos/metabolismo , Disponibilidad Biológica , Transporte Biológico , Sistemas CRISPR-Cas , Cambio Climático , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , FMN Reductasa/genética , Galio/metabolismo , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Microbiota , Oxidación-Reducción , Filogenia , Proteínas Recombinantes de Fusión/metabolismo , Agua de Mar/química , Especificidad de la Especie
17.
Environ Microbiol ; 23(11): 6734-6748, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34431195

RESUMEN

We used 16S, 18S, plastid and internal transcribed spacer (for Synechococcus strains) sequencing to quantify relative microbial abundances in water-column samples and on sediment-trap-collected particles across an environmental gradient in the California Current Ecosystem (CCE) spanning a > 60-fold range of surface chlorophyll. Most mixed-layer dominant eukaryotes and prokaryotes were consistently underrepresented on sinking particles. Diatoms were the only phototrophic taxa consistently overrepresented. Even within this class, however, one genus (Thalassiosira) was a particle-enriched dominant, while a similarly abundant species was poorly represented. Synechococcus was significantly enriched on sinking particles at only one of four sites, but clade I was disproportionately abundant on sinking particles throughout the region compared with clade IV, the euphotic-zone co-dominant. The most abundant microbes on particles across the CCE were organisms with distributional maxima close to the sediment-trap depth (rhizarians), microbes associated with metazoans or sinking particles as a nutritional habitat (certain alveolates, Gammaproteobacteria) and organisms that resist digestive degradation of their DNA (Thalassiosira, Synechococcus). For assessing taxon contributions of phytoplankton to carbon export, our results highlight the need for sequence-based quantitative approaches that can be used to integrate euphotic-zone abundances, compute rates and account for taxon differences in preservation of sequence markers through trophic processing.


Asunto(s)
Diatomeas , Microbiota , Diatomeas/genética , Digestión , Ecosistema , Microbiota/genética , Fitoplancton/genética , Agua de Mar/microbiología
18.
Proc Natl Acad Sci U S A ; 115(52): 13300-13305, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30530699

RESUMEN

Subsurface chlorophyll maximum layers (SCMLs) are nearly ubiquitous in stratified water columns and exist at horizontal scales ranging from the submesoscale to the extent of oligotrophic gyres. These layers of heightened chlorophyll and/or phytoplankton concentrations are generally thought to be a consequence of a balance between light energy from above and a limiting nutrient flux from below, typically nitrate (NO3). Here we present multiple lines of evidence demonstrating that iron (Fe) limits or with light colimits phytoplankton communities in SCMLs along a primary productivity gradient from coastal to oligotrophic offshore waters in the southern California Current ecosystem. SCML phytoplankton responded markedly to added Fe or Fe/light in experimental incubations and transcripts of diatom and picoeukaryote Fe stress genes were strikingly abundant in SCML metatranscriptomes. Using a biogeochemical proxy with data from a 40-y time series, we find that diatoms growing in California Current SCMLs are persistently Fe deficient during the spring and summer growing season. We also find that the spatial extent of Fe deficiency within California Current SCMLs has significantly increased over the last 25 y in line with a regional climate index. Finally, we show that diatom Fe deficiency may be common in the subsurface of major upwelling zones worldwide. Our results have important implications for our understanding of the biogeochemical consequences of marine SCML formation and maintenance.

20.
New Phytol ; 228(3): 946-958, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32535932

RESUMEN

Photoautotrophic growth in nature requires the accumulation of energy-containing molecules via photosynthesis during daylight to fuel nighttime catabolism. Many diatoms store photosynthate as the neutral lipid triacylglycerol (TAG). While the pathways of diatom fatty acid and TAG synthesis appear to be well conserved with plants, the pathways of TAG catabolism and downstream fatty acid ß-oxidation have not been characterised in diatoms. We identified a putative mitochondria-targeted, bacterial-type acyl-CoA dehydrogenase (PtMACAD1) that is present in Stramenopile and Hacrobian eukaryotes, but not found in plants, animals or fungi. Gene knockout, protein-YFP tags and physiological assays were used to determine PtMACAD1's role in the diatom Phaeodactylum tricornutum. PtMACAD1 is located in the mitochondria. Absence of PtMACAD1 led to no consumption of TAG at night and slower growth in light : dark cycles compared with wild-type. Accumulation of transcripts encoding peroxisomal-based ß-oxidation did not change in response to day : night cycles or to PtMACAD1 knockout. Mutants also hyperaccumulated TAG after the amelioration of N limitation. We conclude that diatoms utilise mitochondrial ß-oxidation; this is in stark contrast to the peroxisomal-based pathways observed in plants and green algae. We infer that this pattern is caused by retention of catabolic pathways from the host during plastid secondary endosymbiosis.


Asunto(s)
Diatomeas , Diatomeas/genética , Ácidos Grasos/metabolismo , Lípidos , Mitocondrias/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA