Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Exp Med ; 202(5): 663-71, 2005 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16147977

RESUMEN

During pathologic vessel remodeling, vascular smooth muscle cells (VSMCs) embedded within the collagen-rich matrix of the artery wall mobilize uncharacterized proteolytic systems to infiltrate the subendothelial space and generate neointimal lesions. Although the VSMC-derived serine proteinases, plasminogen activator and plasminogen, the cysteine proteinases, cathepsins L, S, and K, and the matrix metalloproteinases MMP-2 and MMP-9 have each been linked to pathologic matrix-remodeling states in vitro and in vivo, the role that these or other proteinases play in allowing VSMCs to negotiate the three-dimensional (3-D) cross-linked extracellular matrix of the arterial wall remains undefined. Herein, we demonstrate that VSMCs proteolytically remodel and invade collagenous barriers independently of plasmin, cathepsins L, S, or K, MMP-2, or MMP-9. Instead, we identify the membrane-anchored matrix metalloproteinase, MT1-MMP, as the key pericellular collagenolysin that controls the ability of VSMCs to degrade and infiltrate 3-D barriers of interstitial collagen, including the arterial wall. Furthermore, genetic deletion of the proteinase affords mice with a protected status against neointimal hyperplasia and lumen narrowing in vivo. These studies suggest that therapeutic interventions designed to target MT1-MMP could prove beneficial in a range of human vascular disease states associated with the destructive remodeling of the vessel wall extracellular matrix.


Asunto(s)
Arterias/metabolismo , Movimiento Celular/fisiología , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Miocitos del Músculo Liso/metabolismo , Enfermedades Vasculares/metabolismo , Animales , Apoptosis/fisiología , Arterias/ultraestructura , Clonación Molecular , Técnica del Anticuerpo Fluorescente , Técnicas de Transferencia de Gen , Etiquetado Corte-Fin in Situ , Masculino , Metaloproteinasa 14 de la Matriz , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz Asociadas a la Membrana , Ratones , Ratones Mutantes , Microscopía Electrónica , Miocitos del Músculo Liso/ultraestructura , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
J Exp Med ; 195(3): 295-308, 2002 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-11828004

RESUMEN

Cross-linked fibrin is deposited in tissues surrounding wounds, inflammatory sites, or tumors and serves not only as a supporting substratum for trafficking cells, but also as a structural barrier to invasion. While the plasminogen activator-plasminogen axis provides cells with a powerful fibrinolytic system, plasminogen-deleted animals use alternate proteolytic processes that allow fibrin invasion to proceed normally. Using fibroblasts recovered from wild-type or gene-deleted mice, invasion of three-dimensional fibrin gels proceeded in a matrix metalloproteinase (MMP)-dependent fashion. Consistent with earlier studies supporting a singular role for the membrane-anchored MMP, MT1-MMP, in fibrin-invasive events, fibroblasts from MT1-MMP-null mice displayed an early defect in invasion. However, MT1-MMP-deleted fibroblasts circumvented this early deficiency and exhibited compensatory fibrin-invasive activity. The MT1-MMP-independent process was sensitive to MMP inhibitors that target membrane-anchored MMPs, and further studies identified MT2-MMP and MT3-MMP, but not MT4-MMP, as alternate pro-invasive factors. Given the widespread distribution of MT1-, 2-, and 3-MMP in normal and neoplastic cells, these data identify a subset of membrane-anchored MMPs that operate in an autonomous fashion to drive fibrin-invasive activity.


Asunto(s)
Fibrina/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Metaloendopeptidasas/metabolismo , Animales , Células CHO , Línea Celular , Cricetinae , Perros , Fibrinólisis , Fibroblastos/citología , Fibroblastos/metabolismo , Metaloproteinasa 14 de la Matriz , Metaloproteinasa 15 de la Matriz , Metaloproteinasa 16 de la Matriz , Metaloproteinasas de la Matriz Asociadas a la Membrana , Metaloendopeptidasas/deficiencia , Metaloendopeptidasas/genética , Metalotioneína 3 , Ratones , Ratones Noqueados , Transfección
3.
J Cell Biol ; 167(4): 757-67, 2004 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-15545316

RESUMEN

During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix-degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP-dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., beta3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.


Asunto(s)
Vasos Sanguíneos/metabolismo , Colágeno Tipo I/metabolismo , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Metaloendopeptidasas/metabolismo , Neovascularización Fisiológica/fisiología , Animales , Vasos Sanguíneos/citología , Membrana Celular/metabolismo , Células Cultivadas , Embrión de Pollo , Células Endoteliales/citología , Marcación de Gen , Humanos , Receptores de Hialuranos/metabolismo , Integrina beta3/metabolismo , Masculino , Metaloproteinasa 14 de la Matriz , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasas de la Matriz Asociadas a la Membrana , Metaloendopeptidasas/genética , Ratones , Ratones Noqueados , Modelos Biológicos , Fenotipo , Plasminógeno/metabolismo , Receptores de Superficie Celular/metabolismo
4.
Toxicol Mech Methods ; 16(7): 359-63, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-20021008

RESUMEN

Preparation and analysis of tabun (GA) solutions are necessary for the continued development of countermeasures to this nerve agent. GA solutions must be stable and compatible for use in the test systems chosen for study; however, GA is very unstable in saline solutions. In the past we have found GA in saline at 2 mg/mL to be stable for a month or less at -70 degrees C, whereas saline solutions of sarin (GB), soman (GD), and cyclosarin (GF) were stable for many months. Previous studies have shown that Multisol (48.5% H(2)O, 40% propylene glycol, 10% ethanol, and 1.5% benzyl alcohol) provides stable solutions of GA. We confirmed the stability of GA in Multisol with phosphorus nuclear magnetic resonance (P horizontal line NMR) and developed a method for the analysis of GA in Multisol using gas chromatographic flame photometric detection (GCFPD) in the phosphorus mode. The GC method used acetonitrile (CH(3)CN) for a dilution solvent because of its miscibility with GA in chloroform (CHCl(3)) standards and GA in Multisol samples at 1% (v/v). Furthermore, the dilutions with CH(3)CN made the phosphorus mode interference peak present in CHCl(3) analytically manageable, reduced the interferences of Multisol in the GC separation, and contributed to a safe and reliable analysis of GA at 20 mug/mL. We demonstrated the stability of GA in Multisol stored for more than a year at 70 degrees C. This method contributes a suitable technique for the preparation and analysis of reliable solutions of GA in nerve agent medical research and demonstrates the extended stability of GA in Multisol.

5.
Cell ; 125(3): 577-91, 2006 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-16678100

RESUMEN

White adipose tissue (WAT) serves as the primary energy depot in the body by storing fat. During development, fat cell precursors (i.e., preadipocytes) undergo a hypertrophic response as they mature into lipid-laden adipocytes. However, the mechanisms that regulate adipocyte size and mass remain undefined. Herein, we demonstrate that the membrane-anchored metalloproteinase, MT1-MMP, coordinates adipocyte differentiation in vivo. In the absence of the protease, WAT development is aborted, leaving tissues populated by mini-adipocytes which render null mice lipodystrophic. While MT1-MMP preadipocytes display a cell autonomous defect in vivo, null progenitors retain the ability to differentiate into functional adipocytes during 2-dimensional (2-D) culture. By contrast, within the context of the 3-dimensional (3-D) ECM, normal adipocyte maturation requires a burst in MT1-MMP-mediated proteolysis that modulates pericellular collagen rigidity in a fashion that controls adipogenesis. Hence, MT1-MMP acts as a 3-D-specific adipogenic factor that directs the dynamic adipocyte-ECM interactions critical to WAT development.


Asunto(s)
Adipocitos/enzimología , Tejido Adiposo/enzimología , Tejido Adiposo/crecimiento & desarrollo , Matriz Extracelular/enzimología , Metaloproteinasas de la Matriz/genética , Células Madre/enzimología , Adipocitos/citología , Adipogénesis/fisiología , Tejido Adiposo/citología , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Aumento de la Célula , Colágeno/metabolismo , Colagenasas/metabolismo , Matriz Extracelular/genética , Hipertrofia/enzimología , Metaloproteinasa 14 de la Matriz , Metaloproteinasas de la Matriz Asociadas a la Membrana , Ratones , Ratones Noqueados , Células Madre/citología
6.
Cell ; 114(1): 33-45, 2003 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12859896

RESUMEN

Cancer cells are able to proliferate at accelerated rates within the confines of a three-dimensional (3D) extracellular matrix (ECM) that is rich in type I collagen. The mechanisms used by tumor cells to circumvent endogenous antigrowth signals have yet to be clearly defined. We find that the matrix metalloproteinase, MT1-MMP, confers tumor cells with a distinct 3D growth advantage in vitro and in vivo. The replicative advantage conferred by MT1-MMP requires pericellular proteolysis of the ECM, as proliferation is fully suppressed when tumor cells are suspended in 3D gels of protease-resistant collagen. In the absence of proteolysis, tumor cells embedded in physiologically relevant ECM matrices are trapped in a compact, spherical configuration and unable to undergo changes in cell shape or cytoskeletal reorganization required for 3D growth. These observations identify MT1-MMP as a tumor-derived growth factor that regulates proliferation by controlling cell geometry within the confines of the 3D ECM.


Asunto(s)
División Celular/fisiología , Matriz Extracelular/enzimología , Metaloendopeptidasas/metabolismo , Invasividad Neoplásica/fisiopatología , Neoplasias/enzimología , Animales , Tamaño de la Célula/fisiología , Colágeno Tipo I/metabolismo , Colágeno Tipo I/ultraestructura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Perros , Matriz Extracelular/ultraestructura , Sustancias de Crecimiento/metabolismo , Humanos , Metaloproteinasas de la Matriz Asociadas a la Membrana , Microscopía Electrónica , Neoplasias/fisiopatología , Proteínas Represoras/metabolismo , Células Tumorales Cultivadas/metabolismo , Células Tumorales Cultivadas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA