Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mem Inst Oswaldo Cruz ; 116: e210176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35019069

RESUMEN

BACKGROUND: During routine Coronavirus disease 2019 (COVID-19) diagnosis, an unusually high viral load was detected by reverse transcription real-time polymerase chain reaction (RT-qPCR) in a nasopharyngeal swab sample collected from a patient with respiratory and neurological symptoms who rapidly succumbed to the disease. Therefore we sought to characterise the infection. OBJECTIVES: We aimed to determine and characterise the etiological agent responsible for the poor outcome. METHODS: Classical virological methods, such as plaque assay and plaque reduction neutralisation test combined with amplicon-based sequencing, as well as a viral metagenomic approach, were performed to characterise the etiological agents of the infection. FINDINGS: Plaque assay revealed two distinct plaque phenotypes, suggesting either the presence of two severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains or a productive coinfection of two different species of virus. Amplicon-based sequencing did not support the presence of any SARS-CoV-2 genetic variants that would explain the high viral load and suggested the presence of a single SARS-CoV-2 strain. Nonetheless, the viral metagenomic analysis revealed that Coronaviridae and Herpesviridae were the predominant virus families within the sample. This finding was confirmed by a plaque reduction neutralisation test and PCR. MAIN CONCLUSIONS: We characterised a productive coinfection of SARS-CoV-2 and Herpes simplex virus 1 (HSV-1) in a patient with severe symptoms that succumbed to the disease. Although we cannot establish the causal relationship between the coinfection and the severity of the clinical case, this work serves as a warning for future studies focused on the interplay between SARS-CoV-2 and HSV-1 coinfection and COVID-19 severity.


Asunto(s)
COVID-19 , Coinfección , Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2
2.
Clin Infect Dis ; 71(7): e141-e150, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-31712802

RESUMEN

BACKGROUND: Carbapenemase-producing Klebsiella pneumoniae has become a global priority, not least in low- and middle-income countries. Here, we report the emergence and clinical impact of a novel Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-KP) sequence type (ST) 16 clone in a clonal complex (CC) 258-endemic setting. METHODS: In a teaching Brazilian hospital, a retrospective cohort of adult KPC-KP bloodstream infection (BSI) cases (January 2014 to December 2016) was established to study the molecular epidemiology and its impact on outcome (30-day all-cause mortality). KPC-KP isolates underwent multilocus sequence typing. Survival analysis between ST/CC groups and risk factors for fatal outcome (logistic regression) were evaluated. Representative isolates underwent whole-genome sequencing and had their virulence tested in a Galleria larvae model. RESULTS: One hundred sixty-five unique KPC-KP BSI cases were identified. CC258 was predominant (66%), followed by ST16 (12%). The overall 30-day mortality rate was 60%; in contrast, 95% of ST16 cases were fatal. Patients' severity scores were high and baseline clinical variables were not statistically different across STs. In multivariate analysis, ST16 (odds ratio [OR], 21.4; 95% confidence interval [CI], 2.3-202.8; P = .008) and septic shock (OR, 11.9; 95% CI, 4.2-34.1; P < .001) were independent risk factors for fatal outcome. The ST16 clone carried up to 14 resistance genes, including blaKPC-2 in an IncFIBpQIL plasmid, KL51 capsule, and yersiniabactin virulence determinants. The ST16 clone was highly pathogenic in the larvae model. CONCLUSIONS: Mortality rates were high in this KPC-KP BSI cohort, where CC258 is endemic. An emerging ST16 clone was associated with high mortality. Our results suggest that even in endemic settings, highly virulent clones can rapidly emerge demanding constant monitoring.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Adulto , Antibacterianos , Proteínas Bacterianas/genética , Brasil/epidemiología , Humanos , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Tipificación de Secuencias Multilocus , Estudios Retrospectivos , beta-Lactamasas/genética
3.
Phytopathology ; 110(11): 1751-1755, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32520631

RESUMEN

Xylella fastidiosa subsp. pauca, once confined to South America and infecting mainly citrus and coffee plants, has been found to be associated with other hosts and in other geographic regions. We present high-quality draft genome sequences of X. fastidiosa subsp. pauca strains J1a12, B111, U24D, and XRB isolated from citrus plants in Brazil, strain Fb7 isolated from a citrus plant in Argentina and strains 3124, Pr8x, and Hib4 isolated, respectively, from coffee, plum, and hibiscus plants in Brazil. Sequencing was performed using Roche 454-GS FLX, MiSeq-Illumina or Pacific Biosciences platforms. These high-quality genome assemblies will be useful for further studies about the genomic diversity, evolution, and biology of X. fastidiosa.


Asunto(s)
Citrus , Hibiscus , Prunus domestica , Xylella , Argentina , Brasil , Café , Enfermedades de las Plantas , Xylella/genética
4.
BMC Genomics ; 20(1): 530, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253105

RESUMEN

BACKGROUND: Typhoid fever, caused by Salmonella Typhi, follows a fecal-oral transmission route and is a major global public health concern, especially in developing countries like Bangladesh. Increasing emergence of antimicrobial resistance (AMR) is a serious issue; the list of treatments for typhoid fever is ever-decreasing. In addition to IncHI1-type plasmids, Salmonella genomic island (SGI) 11 has been reported to carry AMR genes. Although reports suggest a recent reduction in multidrug resistance (MDR) in the Indian subcontinent, the corresponding genomic changes in the background are unknown. RESULTS: Here, we assembled and annotated complete closed chromosomes and plasmids for 73 S. Typhi isolates using short-length Illumina reads. S. Typhi had an open pan-genome, and the core genome was smaller than previously reported. Considering AMR genes, we identified five variants of SGI11, including the previously reported reference sequence. Five plasmids were identified, including the new plasmids pK91 and pK43; pK43and pHCM2 were not related to AMR. The pHCM1, pPRJEB21992 and pK91 plasmids carried AMR genes and, along with the SGI11 variants, were responsible for resistance phenotypes. pK91 also contained qnr genes, conferred high ciprofloxacin resistance and was related to the H58-sublineage Bdq, which shows the same phenotype. The presence of plasmids (pHCM1 and pK91) and SGI11 were linked to two H58-lineages, Ia and Bd. Loss of plasmids and integration of resistance genes in genomic islands could contribute to the fitness advantage of lineage Ia isolates. CONCLUSIONS: Such events may explain why lineage Ia is globally widespread, while the Bd lineage is locally restricted. Further studies are required to understand how these S. Typhi AMR elements spread and generate new variants. Preventive measures such as vaccination programs should also be considered in endemic countries; such initiatives could potentially reduce the spread of AMR.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Genes Bacterianos/genética , Genómica , Salmonella typhi/genética , Bangladesh , Cromosomas Bacterianos/genética , Islas Genómicas/genética , Genotipo , Humanos , Anotación de Secuencia Molecular , Fenotipo , Plásmidos/genética , Salmonella typhi/efectos de los fármacos , Salmonella typhi/aislamiento & purificación
5.
Genet Mol Biol ; 41(3): 593-604, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30235395

RESUMEN

Amazon parrots are long-lived birds with highly developed cognitive skills, including vocal learning. Several parrot mitogenomes have been sequenced, but important aspects of their organization and evolution are not fully understood or have limited experimental support. The main aim of the present study was to describe the mitogenome of the blue-fronted Amazon, Amazona aestiva, and compare it to other mitogenomes from the genus Amazona and the order Psittaciformes. We observed that mitogenomes are highly conserved among Amazon parrots, and a detailed analysis of their duplicated control regions revealed conserved blocks. Population level analyses indicated that the specimen analyzed here seems to be close to A. aestiva individuals from Bahia state. Evolutionary relationships of 41 Psittaciformes species and three outgroups were inferred by BEAST. All relationships were retrieved with high support.

6.
BMC Genomics ; 17: 534, 2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27485828

RESUMEN

BACKGROUND: Common bean (Phaseolus vulgaris L.) is the most important legume cropped worldwide for food production and its agronomic performance can be greatly improved if the benefits from symbiotic nitrogen fixation are maximized. The legume is known for its high promiscuity in nodulating with several Rhizobium species, but those belonging to the Rhizobium tropici "group" are the most successful and efficient in fixing nitrogen in tropical acid soils. Rhizobium leucaenae belongs to this group, which is abundant in the Brazilian "Cerrados" soils and frequently submitted to several environmental stresses. Here we present the first high-quality genome drafts of R. leucaenae, including the type strain CFN 299(T) and the very efficient strain CPAO 29.8. Our main objective was to identify features that explain the successful capacity of R. leucaenae in nodulating common bean under stressful environmental conditions. RESULTS: The genomes of R. leucaenae strains CFN 299(T) and CPAO 29.8 were estimated at 6.7-6.8 Mbp; 7015 and 6899 coding sequences (CDS) were predicted, respectively, 6264 of which are common to both strains. The genomes of both strains present a large number of CDS that may confer tolerance of high temperatures, acid soils, salinity and water deficiency. Types I, II, IV-pili, IV and V secretion systems were present in both strains and might help soil and host colonization as well as the symbiotic performance under stressful conditions. The symbiotic plasmid of CPAO 29.8 is highly similar to already described tropici pSyms, including five copies of nodD and three of nodA genes. R. leucaenae CFN 299(T) is capable of synthesizing Nod factors in the absence of flavonoids when submitted to osmotic stress, indicating that under abiotic stress the regulation of nod genes might be different. CONCLUSION: A detailed study of the genes putatively related to stress tolerance in R. leucaenae highlighted an intricate pattern comprising a variety of mechanisms that are probably orchestrated to tolerate the stressful conditions to which the strains are submitted on a daily basis. The capacity to synthesize Nod factors under abiotic stress might follow the same regulatory pathways as in CIAT 899(T) and may help both to improve bacterial survival and to expand host range to guarantee the perpetuation of the symbiosis.


Asunto(s)
Genes Bacterianos , Genoma Bacteriano , Genómica , Rhizobium/genética , Estrés Fisiológico/genética , Simbiosis/genética , Adaptación Biológica/genética , Ambiente , Genómica/métodos , Calor , Concentración de Iones de Hidrógeno , Fijación del Nitrógeno/genética , Presión Osmótica , Estrés Oxidativo/genética , Filogenia , Nodulación de la Raíz de la Planta/genética , Plásmidos/genética , Rhizobium/clasificación
7.
BMC Genomics ; 17(Suppl 8): 726, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27801294

RESUMEN

BACKGROUND: Magnetotactic bacteria (MTB) are a unique group of prokaryotes that have a potentially high impact on global geochemical cycling of significant primary elements because of their metabolic plasticity and the ability to biomineralize iron-rich magnetic particles called magnetosomes. Understanding the genetic composition of the few cultivated MTB along with the unique morphological features of this group of bacteria may provide an important framework for discerning their potential biogeochemical roles in natural environments. RESULTS: Genomic and ultrastructural analyses were combined to characterize the cultivated magnetotactic coccus Magnetofaba australis strain IT-1. Cells of this species synthesize a single chain of elongated, cuboctahedral magnetite (Fe3O4) magnetosomes that cause them to align along magnetic field lines while they swim being propelled by two bundles of flagella at velocities up to 300 µm s-1. High-speed microscopy imaging showed the cells move in a straight line rather than in the helical trajectory described for other magnetotactic cocci. Specific genes within the genome of Mf. australis strain IT-1 suggest the strain is capable of nitrogen fixation, sulfur reduction and oxidation, synthesis of intracellular polyphosphate granules and transporting iron with low and high affinity. Mf. australis strain IT-1 and Magnetococcus marinus strain MC-1 are closely related phylogenetically although similarity values between their homologous proteins are not very high. CONCLUSION: Mf. australis strain IT-1 inhabits a constantly changing environment and its complete genome sequence reveals a great metabolic plasticity to deal with these changes. Aside from its chemoautotrophic and chemoheterotrophic metabolism, genomic data indicate the cells are capable of nitrogen fixation, possess high and low affinity iron transporters, and might be capable of reducing and oxidizing a number of sulfur compounds. The relatively large number of genes encoding transporters as well as chemotaxis receptors in the genome of Mf. australis strain IT-1 combined with its rapid swimming velocities, indicate that cells respond rapidly to environmental changes.


Asunto(s)
Adaptación Fisiológica/genética , Alphaproteobacteria/genética , Alphaproteobacteria/fisiología , Ambiente , Genómica , Alphaproteobacteria/citología , Alphaproteobacteria/metabolismo , Magnetosomas/metabolismo , Minerales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética
8.
Environ Microbiol ; 18(12): 4426-4441, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27241114

RESUMEN

Magnetotactic bacteria (MTB) are a heterogeneous group of ubiquitous aquatic microorganisms capable of biomineralizing nano-sized, membrane-bound, magnetic iron-rich mineral particles called magnetosomes. MTB are found in chemically-stratified aquatic sediments and/or water columns with a wide range of salinities, moderate to high temperatures, and pH varying from neutral to strongly alkaline. MTB from very cold environments have not been investigated to any great degree and here we characterize MTB from the low temperature Antarctic maritime region. Sediment samples were collected at nine sampling sites within Admiralty Bay, King George Island (62°23'S 58°27'W) from 2009 to 2013. Samples from five sites contained MTB and those from two of these sites contained large number of magnetotactic cocci that were studied using electron microscopy and molecular techniques. The magnetotactic cocci contained magnetosomes either arranged as two or four chains or as a disorganized cluster. The crystalline habit and composition of all magnetosomes analyzed with high-resolution transmission electron microscopy and energy dispersive X-ray microanalysis were consistent with elongated prismatic crystals of magnetite (Fe3 O4 ). The retrieved 16S rRNA gene sequences from magnetically-enriched magnetotactic cocci clustered into three distinct groups affiliated with the Alphaproteobacteria class of the Proteobacteria. Novel sequences of each phylogenetic cluster were confirmed using fluorescent in situ hybridization. Metagenomic data analysis of magnetically-enriched magnetotactic cocci revealed the presence of mam genes and MTB-specific hypothetical protein coding genes. Sequence homology and phylogenetic analysis indicated that predicted proteins are related to those of cultivated alphaproteobacterial MTB. The consistent and continuous low temperature of the sediment where the magnetotactic cocci are present (always below 1°C) suggests that these MTB from maritime Antarctica are psychrophiles. Moreover, similar morphotypes and 16S gene sequences were retrieved from samples collected from different sites from maritime Antarctica for several years suggesting that these new strains of MTB are indigenous members of Antarctic microbiota.


Asunto(s)
Alphaproteobacteria/aislamiento & purificación , Sedimentos Geológicos/microbiología , Agua de Mar/microbiología , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/crecimiento & desarrollo , Regiones Antárticas , Medios de Cultivo/química , Medios de Cultivo/metabolismo , ADN Bacteriano/genética , Sedimentos Geológicos/química , Hibridación Fluorescente in Situ , Magnetosomas , Microscopía Electrónica de Transmisión , Filogenia , ARN Ribosómico 16S/genética , Salinidad , Agua de Mar/química
9.
Eukaryot Cell ; 14(2): 158-69, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25480940

RESUMEN

Sporotrichosis is one of the most frequent subcutaneous fungal infections in humans and animals caused by members of the plant-associated, dimorphic genus Sporothrix. Three of the four medically important Sporothrix species found in Brazil have been considered asexual as no sexual stage has ever been reported in Sporothrix schenckii, Sporothrix brasiliensis, or Sporothrix globosa. We have identified the mating type (MAT) loci in the S. schenckii (strain 1099-18/ATCC MYA-4821) and S. brasiliensis (strain 5110/ATCC MYA-4823) genomes by using comparative genomic approaches to determine the mating type ratio in these pathogen populations. Our analysis revealed the presence of a MAT1-1 locus in S. schenckii while a MAT1-2 locus was found in S. brasiliensis representing genomic synteny to other Sordariomycetes. Furthermore, the components of the mitogen-activated protein kinase (MAPK)-pheromone pathway, pheromone processing enzymes, and meiotic regulators have also been identified in the two pathogens, suggesting the potential for sexual reproduction. The ratio of MAT1-1 to MAT1-2 was not significantly different from 1:1 for all three Sporothrix species, but the population of S. brasiliensis in the outbreaks originated from a single mating type. We also explored the population genetic structure of these pathogens using sequence data of two loci to improve our knowledge of the pattern of geographic distribution, genetic variation, and virulence phenotypes. Population genetics data showed significant population differentiation and clonality with a low level of haplotype diversity in S. brasiliensis isolates from different regions of sporotrichosis outbreaks in Brazil. In contrast, S. schenckii isolates demonstrated a high degree of genetic variability without significant geographic differentiation, indicating the presence of recombination. This study demonstrated that two species causing the same disease have contrasting reproductive strategies and genetic variability patterns.


Asunto(s)
Genes del Tipo Sexual de los Hongos/genética , Reproducción Asexuada , Sporothrix/genética , Esporotricosis/transmisión , Animales , Brasil , Gatos , Brotes de Enfermedades , Humanos , Sistema de Señalización de MAP Quinasas , Polimorfismo Genético , Sporothrix/patogenicidad , Sporothrix/fisiología , Esporotricosis/veterinaria , Virulencia/genética
10.
Nucleic Acids Res ; 41(15): 7387-400, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23761445

RESUMEN

Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vector-human and vector-parasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles-darlingi.


Asunto(s)
Anopheles/genética , Genoma de los Insectos , Insectos Vectores/genética , Animales , Anopheles/clasificación , Brasil , Cromosomas de Insectos/genética , Elementos Transponibles de ADN , Evolución Molecular , Femenino , Variación Genética , Interacciones Huésped-Parásitos , Proteínas de Insectos/genética , Insectos Vectores/clasificación , Resistencia a los Insecticidas , Insecticidas/farmacología , Malaria/parasitología , Masculino , Anotación de Secuencia Molecular , Filogenia , Sintenía , Transcriptoma
11.
BMC Genomics ; 15: 420, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24888481

RESUMEN

BACKGROUND: The soybean-Bradyrhizobium symbiosis can be highly efficient in fixing nitrogen, but few genomic sequences of elite inoculant strains are available. Here we contribute with information on the genomes of two commercial strains that are broadly applied to soybean crops in the tropics. B. japonicum CPAC 15 (=SEMIA 5079) is outstanding in its saprophytic capacity and competitiveness, whereas B. diazoefficiens CPAC 7 (=SEMIA 5080) is known for its high efficiency in fixing nitrogen. Both are well adapted to tropical soils. The genomes of CPAC 15 and CPAC 7 were compared to each other and also to those of B. japonicum USDA 6T and B. diazoefficiens USDA 110T. RESULTS: Differences in genome size were found between species, with B. japonicum having larger genomes than B. diazoefficiens. Although most of the four genomes were syntenic, genome rearrangements within and between species were observed, including events in the symbiosis island. In addition to the symbiotic region, several genomic islands were identified. Altogether, these features must confer high genomic plasticity that might explain adaptation and differences in symbiotic performance. It was not possible to attribute known functions to half of the predicted genes. About 10% of the genomes was composed of exclusive genes of each strain, but up to 98% of them were of unknown function or coded for mobile genetic elements. In CPAC 15, more genes were associated with secondary metabolites, nutrient transport, iron-acquisition and IAA metabolism, potentially correlated with higher saprophytic capacity and competitiveness than seen with CPAC 7. In CPAC 7, more genes were related to the metabolism of amino acids and hydrogen uptake, potentially correlated with higher efficiency of nitrogen fixation than seen with CPAC 15. CONCLUSIONS: Several differences and similarities detected between the two elite soybean-inoculant strains and between the two species of Bradyrhizobium provide new insights into adaptation to tropical soils, efficiency of N2 fixation, nodulation and competitiveness.


Asunto(s)
Bradyrhizobium/clasificación , Bradyrhizobium/genética , Genoma Bacteriano , Glycine max/microbiología , Bradyrhizobium/fisiología , Tamaño del Genoma , Genómica , Secuencias Repetitivas Esparcidas , Datos de Secuencia Molecular , Filogenia , Recombinación Genética , Glycine max/fisiología , Simbiosis
12.
BMC Genomics ; 15: 54, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24450656

RESUMEN

BACKGROUND: Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial and community-acquired infections. A wide repertoire of virulence and antimicrobial resistance genes is present in K. pneumoniae genomes, which can constitute extra challenges in the treatment of infections caused by some strains. K. pneumoniae Kp13 is a multidrug-resistant strain responsible for causing a large nosocomial outbreak in a teaching hospital located in Southern Brazil. Kp13 produces K. pneumoniae carbapenemase (KPC-2) but is unrelated to isolates belonging to ST 258 and ST 11, the main clusters associated with the worldwide dissemination of KPC-producing K. pneumoniae. In this report, we perform a genomic comparison between Kp13 and each of the following three K. pneumoniae genomes: MGH 78578, NTUH-K2044 and 342. RESULTS: We have completely determined the genome of K. pneumoniae Kp13, which comprises one chromosome (5.3 Mbp) and six plasmids (0.43 Mbp). Several virulence and resistance determinants were identified in strain Kp13. Specifically, we detected genes coding for six beta-lactamases (SHV-12, OXA-9, TEM-1, CTX-M-2, SHV-110 and KPC-2), eight adhesin-related gene clusters, including regions coding for types 1 (fim) and 3 (mrk) fimbrial adhesins. The rmtG plasmidial 16S rRNA methyltransferase gene was also detected, as well as efflux pumps belonging to five different families. Mutations upstream the OmpK35 porin-encoding gene were evidenced, possibly affecting its expression. SNPs analysis relative to the compared strains revealed 141 mutations falling within CDSs related to drug resistance which could also influence the Kp13 lifestyle. Finally, the genetic apparatus for synthesis of the yersiniabactin siderophore was identified within a plasticity region. Chromosomal architectural analysis allowed for the detection of 13 regions of difference in Kp13 relative to the compared strains. CONCLUSIONS: Our results indicate that the plasticity occurring at many hierarchical levels (from whole genomic segments to individual nucleotide bases) may play a role on the lifestyle of K. pneumoniae Kp13 and underlie the importance of whole-genome sequencing to study bacterial pathogens. The general chromosomal structure was somewhat conserved among the compared bacteria, and recombination events with consequent gain/loss of genomic segments appears to be driving the evolution of these strains.


Asunto(s)
Genoma Bacteriano , Klebsiella pneumoniae/genética , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bombas Iónicas/genética , Bombas Iónicas/metabolismo , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Plásmidos/metabolismo , Polimorfismo de Nucleótido Simple , Polimixinas/farmacología , Análisis de Secuencia de ADN , Virulencia/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
13.
BMC Genomics ; 15: 236, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24670056

RESUMEN

BACKGROUND: The rubber tree, Hevea brasiliensis, is a species native to the Brazilian Amazon region and it supplies almost all the world's natural rubber, a strategic raw material for a variety of products. One of the major challenges for developing rubber tree plantations is adapting the plant to biotic and abiotic stress. Transcriptome analysis is one of the main approaches for identifying the complete set of active genes in a cell or tissue for a specific developmental stage or physiological condition. RESULTS: Here, we report on the sequencing, assembling, annotation and screening for molecular markers from a pool of H. brasiliensis tissues. A total of 17,166 contigs were successfully annotated. Then, 2,191 Single Nucleotide Variation (SNV) and 1.397 Simple Sequence Repeat (SSR) loci were discriminated from the sequences. From 306 putative, mainly non-synonymous SNVs located in CDS sequences, 191 were checked for their ability to characterize 23 Hevea genotypes by an allele-specific amplification technology. For 172 (90%), the nucleotide variation at the predicted genomic location was confirmed, thus validating the different steps from sequencing to the in silico detection of the SNVs. CONCLUSIONS: This is the first study of the H. brasiliensis transcriptome, covering a wide range of tissues and organs, leading to the production of the first developed SNP markers. This process could be amplified to a larger set of in silico detected SNVs in expressed genes in order to increase the marker density in available and future genetic maps. The results obtained in this study will contribute to the H. brasiliensis genetic breeding program focused on improving of disease resistance and latex yield.


Asunto(s)
Genes de Plantas , Hevea/genética , Análisis por Conglomerados , Mapeo Contig , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Sitios Genéticos , Marcadores Genéticos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ARN , Transcriptoma
14.
BMC Genomics ; 15: 822, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-25263348

RESUMEN

BACKGROUND: Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins. RESULTS: We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity. CONCLUSIONS: The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.


Asunto(s)
Proteínas Fúngicas/genética , Genoma Fúngico , Metarhizium/genética , Animales , Hibridación Genómica Comparativa , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Metarhizium/clasificación , Filogenia , Rhipicephalus/metabolismo , Rhipicephalus/microbiología , Análisis de Secuencia de ARN
15.
BMC Genom Data ; 25(1): 81, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227788

RESUMEN

OBJECTIVES: The two oyster species studied hold considerable economic importance for artisanal harvest (Crassostrea rhizophorae) and aquaculture (Crassostrea gasar). Their draft genomes will play an important role in the application of genomic methods such as RNAseq, population-based genomic scans aiming at addressing expression responses to pollution stress, adaptation to salinity and temperature variation, and will also permit investigating the genetic bases and enable marker-assisted selection of economically important traits like shell and mantle coloration and resistance to temperature and disease. DATA DESCRIPTION: The draft assembly size of Crassostrea gasar is 506 Mbp, and of Crassostrea rhizophorae is 584 Mbp with scaffolds N50 of 11,3 Mbp and 4,9 Mbp, respectively. The general masked bases by RepeatMasker in both genomes were highly similar using different datasets. The masked bases varied from 9.41% in C. gasar to 10.05% in C. rhizophorae and 42.85% in C. gasar to 44.44% in C. rhizophorae using Dfam and RepeatModeler datasets, respectively. Functional annotation with eggNog resulted in 34,693 annotated proteins in C. rhizophorae and 26,328 in C. gasar. BUSCO analysis shows that almost 99% of genes (5,295) are complete in relation to the mollusk orthologous genes dataset (mollusca_odb10).


Asunto(s)
Crassostrea , Genoma , Crassostrea/genética , Crassostrea/crecimiento & desarrollo , Animales , Genoma/genética , Acuicultura/métodos , Anotación de Secuencia Molecular , Genómica/métodos , Océano Atlántico
16.
Sci Rep ; 14(1): 8982, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637586

RESUMEN

Many molecular mechanisms that lead to the host antibody response to COVID-19 vaccines remain largely unknown. In this study, we used serum antibody detection combined with whole blood RNA-based transcriptome analysis to investigate variability in vaccine response in healthy recipients of a booster (third) dose schedule of the mRNA BNT162b2 vaccine against COVID-19. The cohort was divided into two groups: (1) low-stable individuals, with antibody concentration anti-SARS-CoV IgG S1 below 0.4 percentile at 180 days after boosting vaccination; and (2) high-stable individuals, with antibody values greater than 0.6 percentile of the range in the same period (median 9525 [185-80,000] AU/mL). Differential gene expression, expressed single nucleotide variants and insertions/deletions, differential splicing events, and allelic imbalance were explored to broaden our understanding of the immune response sustenance. Our analysis revealed a differential expression of genes with immunological functions in individuals with low antibody titers, compared to those with higher antibody titers, underscoring the fundamental importance of the innate immune response for boosting immunity. Our findings also provide new insights into the determinants of the immune response variability to the SARS-CoV-2 mRNA vaccine booster, highlighting the significance of differential splicing regulatory mechanisms, mainly concerning HLA alleles, in delineating vaccine immunogenicity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2/genética , Vacuna BNT162 , Vacunas de ARNm , COVID-19/prevención & control , Anticuerpos , Inmunidad Innata , Anticuerpos Antivirales
17.
Vector Borne Zoonotic Dis ; 24(9): 625-631, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38829161

RESUMEN

Introduction: COVID-19 is an infectious disease caused by SARS-CoV-2 that has become a serious threat to public health owing to its rapid spread from aerosols from infected people. Despite being considered a strictly human disease, there are reports in the literature about animals with confirmed presence of the virus. Aim: Owing to the scarcity of scientific literature on the potential for infection of animals and their importance for One Health, the objective of this work was to research SARS-CoV-2 RNA in felines (Felis silvestris catus) and dogs (Canis lupus familiaris) domiciled. Materials and Methods: Oropharyngeal swabs were collected from domestic dogs and cats belonging to patients diagnosed with COVID-19 from August to October 2021 and residents of the northwest and west regions of Paraná, Brazil. Results: Of the 34 samples collected, 14 were from dogs and 20 from cats. Three of these samples tested positive in real-time PCR, and two of them were also positive in the immunochromatographic test. After testing positive in real-time PCR, the samples underwent genetic sequencing using the Illumina COVIDSeq test. Of the 34 samples collected, three (9%), all of them female and from the feline species, tested positive in real-time PCR, with two of these (67%) also testing positive in the immunochromatographic test. Regarding sequencing, it was possible to sequence the three samples aligned with the AY.101 lineage, corresponding to the Delta variant. Conclusion: The occurrence of SARS-CoV-2 infection in dogs and cats is seen as an unintended event with significant implications for public health, including its potential transmission to other animal species. Further research is required to enhance our understanding of how this disease spreads among these animals and its broader impact on One Health initiatives.


Asunto(s)
COVID-19 , Gatos , Perros , Mascotas , SARS-CoV-2 , Animales , Gatos/virología , Perros/virología , Brasil , COVID-19/diagnóstico , COVID-19/transmisión , COVID-19/virología , Paraguay , Mascotas/virología , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Femenino
18.
BMC Genomics ; 14: 175, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23497205

RESUMEN

BACKGROUND: Mycoplasma hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis live in swine respiratory tracts. M. flocculare, a commensal bacterium, is genetically closely related to M. hyopneumoniae, the causative agent of enzootic porcine pneumonia. M. hyorhinis is also pathogenic, causing polyserositis and arthritis. In this work, we present the genome sequences of M. flocculare and M. hyopneumoniae strain 7422, and we compare these genomes with the genomes of other M. hyoponeumoniae strain and to the a M. hyorhinis genome. These analyses were performed to identify possible characteristics that may help to explain the different behaviors of these species in swine respiratory tracts. RESULTS: The overall genome organization of three species was analyzed, revealing that the ORF clusters (OCs) differ considerably and that inversions and rearrangements are common. Although M. flocculare and M. hyopneumoniae display a high degree of similarity with respect to the gene content, only some genomic regions display considerable synteny. Genes encoding proteins that may be involved in host-cell adhesion in M. hyopneumoniae and M. flocculare display differences in genomic structure and organization. Some genes encoding adhesins of the P97 family are absent in M. flocculare and some contain sequence differences or lack of domains that are considered to be important for adhesion to host cells. The phylogenetic relationship of the three species was confirmed by a phylogenomic approach. The set of genes involved in metabolism, especially in the uptake of precursors for nucleic acids synthesis and nucleotide metabolism, display some differences in copy number and the presence/absence in the three species. CONCLUSIONS: The comparative analyses of three mycoplasma species that inhabit the swine respiratory tract facilitated the identification of some characteristics that may be related to their different behaviors. M. hyopneumoniae and M. flocculare display many differences that may help to explain why one species is pathogenic and the other is considered to be commensal. However, it was not possible to identify specific virulence determinant factors that could explain the differences in the pathogenicity of the analyzed species. The M. hyorhinis genome contains differences in some components involved in metabolism and evasion of the host's immune system that may contribute to its growth aggressiveness. Several horizontal gene transfer events were identified. The phylogenomic analysis places M. hyopneumoniae, M. flocculare and M. hyorhinis in the hyopneumoniae clade.


Asunto(s)
Mycoplasma/clasificación , Mycoplasma/genética , Neumonía Porcina por Mycoplasma/microbiología , Sistema Respiratorio/microbiología , Animales , Mapeo Cromosómico , Genoma , Mycoplasma/patogenicidad , Filogenia , Neumonía Porcina por Mycoplasma/genética , Neumonía Porcina por Mycoplasma/patología , Sistema Respiratorio/patología , Porcinos
19.
Environ Microbiol ; 15(8): 2267-74, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23438345

RESUMEN

Horizontal gene transfer (HGT), the transfer of genetic material other than by descent, is thought to have played significant roles in the evolution and distribution of genes in prokaryotes. These include those responsible for the ability of motile, aquatic magnetotactic bacteria (MTB) to align and swim along magnetic field lines and the biomineralization of magnetosomes that are responsible for this behaviour. There is some genomic evidence that HGT might be responsible for the distribution of magnetosome genes in different phylogenetic groups of bacteria. For example, in the genomes of a number of MTB, magnetosome genes are present as clusters within a larger structure known as the magnetosome genomic island surrounded by mobile elements such as insertion sequences and transposases as well as tRNA genes. Despite this, there is no strong direct proof of HGT between these organisms. Here we show that a phylogenetic tree based on magnetosome protein amino acid sequences from a number of MTB was congruent with the tree based on the organisms' 16S rRNA gene sequences. This shows that evolution and divergence of these proteins and the 16S rRNA gene occurred similarly. This suggests that magnetotaxis originated monophyletically in the Proteobacteria phylum and implies that the common ancestor of all Proteobacteria was magnetotactic.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Magnetosomas/genética , Filogenia , Bacterias/metabolismo , Secuencia de Bases , Elementos Transponibles de ADN/genética , Transferencia de Gen Horizontal/genética , Genómica , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/metabolismo , ARN Ribosómico 16S/genética
20.
Environ Microbiol ; 15(10): 2712-35, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23607663

RESUMEN

Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane-bounded, tens-of-nanometre-sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet-shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite-producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.


Asunto(s)
Deltaproteobacteria/genética , Óxido Ferrosoférrico , Genoma Bacteriano/genética , Hierro , Magnetosomas/genética , Sulfuros , Secuencia Conservada , Deltaproteobacteria/clasificación , Magnetismo , Datos de Secuencia Molecular , Familia de Multigenes/genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA