Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mult Scler ; 28(11): 1673-1684, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35575213

RESUMEN

OBJECTIVE: The objective of this study was to explore the potential causal associations of body mass index, height, weight, fat mass, fat percentage and non-fat mass in the whole body, arms, legs and trunk (henceforth, 'anthropometric measures') with multiple sclerosis (MS) risk and severity. We also investigated the potential for reverse causation between anthropometric measures and MS risk. METHODS: We conducted a two-sample univariable, multivariable and bidirectional Mendelian randomisation (MR) analysis. RESULTS: A range of features linked to obesity (body mass index, weight, fat mass and fat percentage) were risk factors for MS development and worsened the disease's severity in MS patients. Interestingly, we were able to demonstrate that height and non-fat mass have no association with MS risk or MS severity. We demonstrated that the association between anthropometric measures and MS is not subject to bias from reverse causation. CONCLUSIONS: Our findings provide evidence from human genetics that a range of features linked to obesity is an important contributor to MS development and MS severity, but height and non-fat mass are not. Importantly, these findings also identify a potentially modifiable factor that may reduce the accumulation of further disability and ameliorate MS severity.


Asunto(s)
Esclerosis Múltiple , Tejido Adiposo , Índice de Masa Corporal , Humanos , Análisis de la Aleatorización Mendeliana , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/genética , Obesidad/epidemiología , Obesidad/genética , Polimorfismo de Nucleótido Simple
2.
Ann Hum Genet ; 79(5): 350-356, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26102279

RESUMEN

Dystrophic epidermolysis bullosa (DEB) is an inherited skin disorder with variable severity and heterogeneous genetic involvement. Diagnostic approaches for this condition include clinical evaluations and electron microscopy of patients' skin biopsies, followed by Sanger sequencing (SS) of a large gene (118 exons) that encodes the alpha chain of type VII collagen (COL7A1) located on Chromosome 3p21.1. However, the use of SS may hinder diagnostic efficiency and lead to delays because it is costly and time-consuming. We evaluated a 5-generation consanguineous family with 3 affected individuals presenting the severe generalised DEB phenotype. Human whole-exome sequencing (WES) revealed 2 homozygous sequence variants: the previously reported variant p.Arg578* in exon 13 and a novel variant p.Arg2063Gln in exon 74 of the COL7A1 gene. Validation by SS, performed on all family members, confirmed the cosegregation of the 2 variants with the disease phenotype. To the best of our knowledge, 2 homozygous COL7A1 variants have never been simultaneously reported in DEB patients; however, the upstream protein truncation variant is more likely to be disease-causing than the novel missense variant. WES can be used as an efficient molecular diagnostic tool for evaluating autosomal recessive forms of DEB.

3.
Neurology ; 101(17): e1729-e1740, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37657941

RESUMEN

BACKGROUND AND OBJECTIVES: There has been considerable interest in statins because of their pleiotropic effects beyond their lipid-lowering properties. Many of these pleiotropic effects are predominantly ascribed to Rho small guanosine triphosphatases (Rho GTPases) proteins. We aimed to genetically investigate the role of lipids and statin interventions on multiple sclerosis (MS) risk and severity. METHOD: We used two-sample Mendelian randomization (MR) to investigate (1) the causal role of genetically mimic both cholesterol-dependent (through low-density lipoprotein cholesterol (LDL-C) and cholesterol biosynthesis pathway) and cholesterol-independent (through Rho GTPases) effects of statins on MS risk and MS severity, (2) the causal link between lipids (high-density lipoprotein cholesterol [HDL-C] and triglycerides [TG]) levels and MS risk and severity, and (3) the reverse causation between lipid fractions and MS risk. We used summary statistics from the Global Lipids Genetics Consortium (GLGC), eQTLGen Consortium, and the International MS Genetics Consortium (IMSGC) for lipids, expression quantitative trait loci, and MS, respectively (GLGC: n = 188,577; eQTLGen: n = 31,684; IMSGC (MS risk): n = 41,505; IMSGC (MS severity): n = 7,069). RESULTS: The results of MR using the inverse-variance weighted method show that genetically predicted RAC2, a member of cholesterol-independent pathway (OR 0.86 [95% CI 0.78-0.95], p-value 3.80E-03), is implicated causally in reducing MS risk. We found no evidence for the causal role of LDL-C and the member of cholesterol biosynthesis pathway on MS risk. The MR results also show that lifelong higher HDL-C (OR 1.14 [95% CI 1.04-1.26], p-value 7.94E-03) increases MS risk but TG was not. Furthermore, we found no evidence for the causal role of lipids and genetically mimicked statins on MS severity. There is no evidence of reverse causation between MS risk and lipids. DISCUSSION: Evidence from this study suggests that RAC2 is a genetic modifier of MS risk. Because RAC2 has been reported to mediate some of the pleiotropic effects of statins, we suggest that statins may reduce MS risk through a cholesterol-independent pathway (that is, RAC2-related mechanism(s)). MR analyses also support a causal effect of HDL-C on MS risk.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Esclerosis Múltiple , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , LDL-Colesterol , Triglicéridos , Análisis de la Aleatorización Mendeliana , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/genética , Colesterol , HDL-Colesterol , Proteínas de Unión al GTP rho/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
4.
Nat Commun ; 12(1): 7342, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930919

RESUMEN

Parkinson's disease is a neurodegenerative movement disorder that currently has no disease-modifying treatment, partly owing to inefficiencies in drug target identification and validation. We use Mendelian randomization to investigate over 3,000 genes that encode druggable proteins and predict their efficacy as drug targets for Parkinson's disease. We use expression and protein quantitative trait loci to mimic exposure to medications, and we examine the causal effect on Parkinson's disease risk (in two large cohorts), age at onset and progression. We propose 23 drug-targeting mechanisms for Parkinson's disease, including four possible drug repurposing opportunities and two drugs which may increase Parkinson's disease risk. Of these, we put forward six drug targets with the strongest Mendelian randomization evidence. There is remarkably little overlap between our drug targets to reduce Parkinson's disease risk versus progression, suggesting different molecular mechanisms. Drugs with genetic support are considerably more likely to succeed in clinical trials, and we provide compelling genetic evidence and an analysis pipeline to prioritise Parkinson's disease drug development.


Asunto(s)
Genoma Humano , Análisis de la Aleatorización Mendeliana , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Encéfalo/metabolismo , Encéfalo/patología , Estudios de Casos y Controles , Estudios de Cohortes , Progresión de la Enfermedad , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Enfermedad de Parkinson/sangre , Sitios de Carácter Cuantitativo/genética , Factores de Riesgo
5.
J Dermatol ; 42(7): 706-9, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25855245

RESUMEN

Sjögren-Larsson syndrome (SLS) is a neurocutaneous disorder inherited in an autosomal recessive fashion. SLS patients are characterized by lipid metabolism error, primarily leading to cardinal signs of ichthyosis, spasticity and mental retardation. Additional signs include short stature, epilepsy, retinal abnormalities and photophobia. More than 90 mutations of the ALDH3A2 gene have been reported for SLS, and such variants can be successfully detected at a rate of 94% by direct DNA sequencing. We performed direct sequencing of ALDH3A2 gene from the index patient, however, no mutation could be detected. HumanCytoSNPs12 array analysis and subsequent targeted single nucleotide polymorphism analysis revealed a novel deletion mutation at chromosome 17p11.2. This 67-Kb region includes the first five coding exons of ALDH3A2, and is flanked by rs2245639 and rs962801. To the best of our knowledge, this mutation is novel and our findings broaden the mutation spectrum of ALDH3A2 causing SLS phenotype.


Asunto(s)
Aldehído Oxidorreductasas/genética , Secuencia de Bases , Eliminación de Secuencia , Síndrome de Sjögren-Larsson/genética , Niño , Cromosomas Humanos Par 17 , Consanguinidad , Femenino , Homocigoto , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA