Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Magn Reson Imaging ; 58(1): 284-293, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36326302

RESUMEN

BACKGROUND: Cerebral tissue integrity decline and cerebral blood flow (CBF) alteration are major aspects of motor and cognitive dysfunctions and neurodegeneration. However, little is known about the association between blood flow and brain microstructural integrity, especially in normal aging. PURPOSE: To assess the association between CBF and cerebral microstructural integrity. STUDY TYPE: Cross sectional. POPULATION: A total of 94 cognitively unimpaired adults (mean age 50.7 years, age range between 22 and 88 years, 56 Men). FIELD STRENGTH/SEQUENCE: A 3 T; pseudo-continuous arterial spin labeling (pCASL), diffusion tensor imaging (DTI), Bayesian Monte Carlo analysis of multicomponent driven equilibrium steady-state observation of T1 and T2 (BMC-mcDESPOT). ASSESSMENT: Lobar associations between CBF derived from pCASL, and longitudinal relaxation rate (R1 ), transverse relaxation rate (R2 ) and myelin water fraction (MWF) derived from BMC-mcDESPOT, or radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD) and fractional anisotropy (FA) derived from DTI were assessed. STATISTICAL TESTS: Multiple linear regression models were used using the mean region of interest (ROI) values for MWF, R1 , R2 , FA, MD, RD, or AxD as the dependent variable and CBF, age, age2 , and sex as the independent variables. A two-sided P value of <0.05 defined statistical significance. RESULTS: R1 , R2 , MWF, FA, MD, RD, and AxD parameters were associated with CBF in most of the cerebral regions evaluated. Specifically, higher CBF values were significantly associated with higher FA, MWF, R1 and R2 , or lower MD, RD and AxD values. DATA CONCLUSION: These findings suggest that cerebral tissue microstructure may be impacted by global brain perfusion, adding further evidence to the intimate relationship between cerebral blood supply and cerebral tissue integrity. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 4.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Adulto , Masculino , Humanos , Adulto Joven , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Imagen de Difusión Tensora/métodos , Teorema de Bayes , Estudios Transversales , Imagen por Resonancia Magnética , Envejecimiento , Agua , Circulación Cerebrovascular/fisiología , Marcadores de Spin , Sustancia Blanca/diagnóstico por imagen
2.
Neuroimage ; 247: 118727, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34813969

RESUMEN

White matter (WM) microstructural properties change across the adult lifespan and with neuronal diseases. Understanding microstructural changes due to aging is paramount to distinguish them from neuropathological changes. Conducted on a large cohort of 147 cognitively unimpaired subjects, spanning a wide age range of 21 to 94 years, our study evaluated sex- and age-related differences in WM microstructure. Specifically, we used diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) indices, sensitive measures of myelin and axonal density in WM, and myelin water fraction (MWF), a measure of the fraction of the signal of water trapped within the myelin sheets, to probe these differences. Furthermore, we examined regional correlations between MWF and DTI indices to evaluate whether the DTI metrics provide information complementary to MWF. While sexual dimorphism was, overall, nonsignificant, we observed region-dependent differences in MWF, that is, myelin content, and axonal density with age and found that both exhibit nonlinear, but distinct, associations with age. Furthermore, DTI indices were moderately correlated with MWF, indicating their good sensitivity to myelin content as well as to other constituents of WM tissue such as axonal density. The microstructural differences captured by our MRI metrics, along with their weak to moderate associations with MWF, strongly indicate the potential value of combining these outcome measures in a multiparametric approach. Furthermore, our results support the last-in-first-out and the gain-predicts-loss hypotheses of WM maturation and degeneration. Indeed, our results indicate that the posterior WM regions are spared from neurodegeneration as compared to anterior regions, while WM myelination follows a temporally symmetric time course across the adult life span.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca/patología , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento , Mapeo Encefálico , Estudios de Cohortes , Femenino , Humanos , Longevidad , Masculino , Persona de Mediana Edad , Vaina de Mielina/patología , Adulto Joven
3.
J Sleep Res ; 30(5): e13304, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33615598

RESUMEN

Most adolescents get less than the recommended 8-10 hr of sleep per night. Functional deficits from lack of sleep include disruption of working memory. Adult neuroimaging studies of sleep deprivation suggest diminished responses in task-related brain networks if performance degrades, but compensatory increased responses with maintained performance. This study utilized functional magnetic resonance imaging to examine compensatory and diminished brain responses in adolescents during working memory performance, comparing chronic sleep restriction and healthy sleep duration. Thirty-six healthy adolescents, 14-17 years old, experienced a 3-week protocol: (a) sleep phase stabilization; (b) sleep restriction (~6.5 hr nightly); and (c) healthy sleep duration (~9 hr nightly). After each sleep manipulation, we acquired functional magnetic resonance imaging with an NBack working memory task with four difficulty levels (0 to 3-back). NBack performance degraded with higher task difficulty, but without a detectable effect of sleep duration. ANOVA revealed main effects of both NBack difficulty and sleep in widespread brain networks. Planned contrasts showed that, compared with healthy sleep, sleep restriction resulted in greater medial prefrontal activation and weaker activation in the precuneus for the most difficult task condition. During sleep restriction, we found compensatory functional responses in brain regions that process sensory input and vigilance. However, adolescents also showed impaired performance and diminished brain responses during the hardest task level under a week of chronic sleep restriction. Chronic sleep restriction during adolescence is common. Understanding the impact of ongoing functional compensation and performance breakdown during this developmental period can have important implications for learning and educational strategies.


Asunto(s)
Memoria a Corto Plazo , Sueño , Adolescente , Adulto , Encéfalo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Privación de Sueño , Vigilia
4.
Sleep ; 47(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36805763

RESUMEN

STUDY OBJECTIVES: Poor sleep in adolescents can increase the risk of obesity, possibly due to changes in dietary patterns. Prior neuroimaging evidence, mostly in adults, suggests that lacking sleep results in increased response to food cues in reward-processing brain regions. Needed is a clarification of the mechanisms by which food reward processing is altered by the kind of chronic sleep restriction (SR) typically experienced by adolescents. This study aimed to elucidate the impact of sleep duration on response to visual food stimuli in healthy adolescents using functional neuroimaging, hypothesizing increased reward processing response after SR compared to a well-rested condition. METHODS: Thirty-nine healthy adolescents, 14-17 years old, completed a 3-week protocol: (1) sleep phase stabilization; (2) SR (~6.5 h nightly); and (3) healthy sleep (HS) duration (~9 h nightly). Participants underwent functional MRI while performing a visual food paradigm. Contrasts of food versus nonfood responses were compared within-subject between conditions of SR and HS. RESULTS: Under SR, there was a greater response to food stimuli compared to HS in a voxel cluster including the left ventral tegmental area and substantia nigra. No change in food appeal rating due to the sleep manipulation was detected. CONCLUSIONS: Outcomes of this study suggest that SR, as commonly experienced by healthy adolescents, results in the elevated dopaminergic drive of the reward network that may augment motivation to seek food in the context of individual food appeal and inhibitory profiles. Countermeasures that reduce food salience could include promoting consistent HS habits.


Asunto(s)
Privación de Sueño , Sueño , Adulto , Humanos , Adolescente , Privación de Sueño/complicaciones , Privación de Sueño/diagnóstico por imagen , Sueño/fisiología , Alimentos , Encéfalo/fisiología , Obesidad
5.
Front Neurol ; 14: 1205426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37602266

RESUMEN

Purpose: Neurite orientation dispersion and density imaging (NODDI) provides measures of neurite density and dispersion through computation of the neurite density index (NDI) and the orientation dispersion index (ODI). However, NODDI overestimates the cerebrospinal fluid water fraction in white matter (WM) and provides physiologically unrealistic high NDI values. Furthermore, derived NDI values are echo-time (TE)-dependent. In this work, we propose a modification of NODDI, named constrained NODDI (C-NODDI), for NDI and ODI mapping in WM. Methods: Using NODDI and C-NODDI, we investigated age-related alterations in WM in a cohort of 58 cognitively unimpaired adults. Further, NDI values derived using NODDI or C-NODDI were correlated with the neurofilament light chain (NfL) concentration levels, a plasma biomarker of axonal degeneration. Finally, we investigated the TE dependence of NODDI or C-NODDI derived NDI and ODI. Results: ODI derived values using both approaches were virtually identical, exhibiting constant trends with age. Further, our results indicated a quadratic relationship between NDI and age suggesting that axonal maturation continues until middle age followed by a decrease. This quadratic association was notably significant in several WM regions using C-NODDI, while limited to a few regions using NODDI. Further, C-NODDI-NDI values exhibited a stronger correlation with NfL concentration levels as compared to NODDI-NDI, with lower NDI values corresponding to higher levels of NfL. Finally, we confirmed the previous finding that NDI estimation using NODDI was dependent on TE, while NDI derived values using C-NODDI exhibited lower sensitivity to TE in WM. Conclusion: C-NODDI provides a complementary method to NODDI for determination of NDI in white matter.

6.
Magn Reson Imaging ; 85: 87-92, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34678436

RESUMEN

Axonal demyelination is a cardinal feature of aging and age-related diseases. The g-ratio, mathematically defined as the inner-to-outer diameter of a myelinated axon, is used as a structural index of optimal axonal myelination and has been shown to represent a sensitive imaging biomarker of microstructural integrity. Several magnetic resonance imaging (MRI) methods for whole-brain mapping of aggregate g-ratio have been introduced. Computation of the aggerate g-ratio requires estimates of the myelin volume fraction (MVF) and the axonal volume fraction (AVF). While accurate determinations of MVF and AVF can be obtained through multicomponent relaxometry or diffusion analyses, respectively, these methods require lengthy acquisition times making their implementation challenging in a clinical context. Therefore, any attempt to overcome this drawback is needed. Expanding on our previous work, we introduced a new MRI method for whole-brain mapping of aggregate g-ratio. This new approach is based on the use of a single-shell diffusion for AVF determination, reducing the acquisition time by approximately ~10 min from our recently introduced approach, while offering the possibility to investigate g-ratio differences in previous studies with existing data for MVF mapping and single-shell diffusion data for AVF mapping. Our comparison analysis indicates that our newly derived aggregate g-ratio values were similar to those derived from our previous method, which requires a longer acquisition time. Further, in agreement with our previous observations, we found quadratic U-shaped relationships between aggregate g-ratio and age in this much larger study cohort. However, our results show that sexual dimorphism in g-ratio was not significant in any brain region investigated.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Blanca , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión Tensora/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
7.
Front Aging Neurosci ; 13: 734992, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34603011

RESUMEN

The choroid plexus (CP) is an important cerebral structure involved in cerebrospinal fluid production and transport of solutes into the brain. Recent studies have uncovered the involvement of the CP in neurological disorders such as Alzheimer's disease and multiple sclerosis. However, our understanding of human age-related microstructural and functional changes in the CP with aging and neuropathology is limited. In this cross-sectional study, we investigated age and sex differences in the CP structure and function using advanced quantitative magnetic resonance imaging methodology in a large cohort (n = 155) of cognitively unimpaired individuals over a wide age range between 21 and 94 years. Our analysis included volumetric measurements, relaxometry measures (T 1 and T 2), diffusion tensor imaging (DTI) measures of fractional anisotropy (FA) and mean diffusivity (MD), as well as measures of cerebral blood flow (CBF). Our results revealed that CP volume was increasing with advancing age. We conjecture that this novel observation is likely attributed to alterations in the CP microstructure or function as well as to ventriculomegaly. Indeed, we also found that CBF was lower with advanced age, while, consistent with previous studies, T 1, T 2 and MD were higher, and FA was lower with advanced age. We attribute these functional and microstructural differences to a deteriorated CP structural integrity with aging. Furthermore, our relaxometry and DTI measures were found to be associated with differences in blood perfusion revealing lower microstructural integrity with lower CBF. Finally, in agreement with literature, sex-related differences in MD and CBF were statistically significant. This work lays the foundation for ongoing investigation of the involvement of CP in neurodegeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA