Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339666

RESUMEN

The design of the aperture-fed annular ring (AFAR) microstrip antenna is presented. This proposed design will ease the fabrication and usability of the 3D-printed and solderless 2D materials. This antenna consists of three layers: the patch, the slot within the ground plane as the power transfer medium, and the microstrip line as the feeding. The parameters of the proposed design are investigated using the finite element method FEM to achieve the 50 Ω impedance with the maximum front-to-back ratio of the radiation pattern. This study was performed based on four steps, each investigating one parameter at a time. These parameters were evaluated based on an initial design and prototype. The optimized design of 3D AFAR attained S11 around 17 dB with a front-to-back ratio of more than 30 dB and a gain of around 3.3 dBi. This design eases the process of using a manufacturing process that involves 3D-printed and 2D metallic materials for antenna applications.

2.
Sensors (Basel) ; 24(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38794073

RESUMEN

This paper presents the design of a performance-improved 4-port multiple-input-multiple-output (MIMO) antenna proposed for millimeter-wave applications, especially for short-range communication systems. The antenna exhibits compact size, simplified geometry, and low profile along with wide bandwidth, high gain, low coupling, and a low Envelope Correlation Coefficient (ECC). Initially, a single-element antenna was designed by the integration of rectangular and circular patch antennas with slots. The antenna is superimposed on a Roger RT/Duroid 6002 with total dimensions of 17 × 12 × 1.52 mm3. Afterward, a MIMO configuration is formed along with a novel decoupling structure comprising a parasitic patch and a Defected Ground Structure (DGS). The parasitic patch is made up of strip lines with a rectangular box in the center, which is filled with circular rings. On the other side, the DGS is made by a combination of etched slots, resulting in separate ground areas behind each MIMO element. The proposed structure not only reduces coupling from -17.25 to -44 dB but also improves gain from 9.25 to 11.9 dBi while improving the bandwidth from 26.5-30.5 GHz to 25.5-30.5 GHz. Moreover, the MIMO antenna offers good performance while offering strong MIMO performance parameters, including ECC, diversity gain (DG), channel capacity loss (CCL), and mean effective gain (MEG). Furthermore, a state-of-the-art comparison is provided that results in the overperforming results of the proposed antenna system as compared to already published work. The antenna prototype is also fabricated and tested to verify software-generated results obtained from the electromagnetic (EM) tool HFSS.

3.
PLoS One ; 19(4): e0301924, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38630765

RESUMEN

To satisfy the requirements of modern communication systems and wearables using 2.4/5.8 GHz band this paper presents a simple, compact, and dual-band solution. The antenna is extracted from a circular monopole by inserting various patches and stubs. The genetic algorithm is utilized to optimize the parameters and achieve the best possible results regarding bandwidth and gain. Afterward, a 2-port multiple-input-multiple-output (MIMO) configuration is created by positioning an identical second single element perpendicularly to the first one. The electrical size of the suggested MIMO configuration is 0.26 λL × 0.53 λL, where λL represents the free space wavelength at lower resonance of 2.45 GHz. The common ground technique is adopted to further reduce and achieve the accepted level of mutual coupling of the MIMO configuration. The presented MIMO antenna offers a low mutual coupling of < -27 dB with 0.2 envelope correlation coefficient (ECC). The antenna has a gain of around 6.2 dBi and 6.5 dBi at resonating frequencies of 2.45 GHz and 5.4 GHz. Furthermore, the specific absorption rate (SAR) analysis of the MIMO antenna offers a range inside of the standard values, showing its potential for On/Off body communications. The comparison with already published works shows that the proposed antenna achieves better results in either compact size or wide operational bandwidth along with low mutual coupling.


Asunto(s)
Dispositivos Electrónicos Vestibles , Comunicación , Electricidad , Vibración
4.
PLoS One ; 19(6): e0305186, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38833501

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0301924.].

5.
Heliyon ; 10(5): e27393, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495203

RESUMEN

This paper introduces a compact Multiple Input Multiple Output (MIMO) Ultrawideband (UWB) antenna seamlessly integrated with the Ku band, tailored for wireless communication applications. The MIMO antenna employs octagonal radiators, crafted from a tapered microstrip line-fed rectangular patch, etched on an economically efficient FR4 substrate measuring 40 × 23 mm2. The octagonal configuration is achieved by introducing a rectangular patch to the central radiator, while parasitic stubs are strategically employed to mitigate coupling among MIMO elements. The antenna demonstrates an extensive operational bandwidth spanning 3.28-17.8 GHz, covering UWB, extended UWB, and Ku-band spectrums globally allocated for heterogeneous applications. With a peak gain of 4.93 dBi and an efficiency of 95.34%, the proposed MIMO antenna showcases superior performance. Key performance parameters, including a low envelope correlation coefficient (ECC) of 0.003 and a substantial diversity gain (DG) of 9.997 dB, are thoroughly analyzed. Comparative assessments against recent works validate the novelty and potential of the proposed antenna for integration into compact wireless systems. This study underscores the success of the antenna design in achieving a harmonious balance of compactness, wide operational bandwidth, and high performance, positioning it as a promising candidate for diverse wireless communication applications.

6.
Heliyon ; 10(5): e26337, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434315

RESUMEN

In this article, we propose the design of a rectangular-shaped patch antenna suitable for ultra-wideband (UWB) applications and short and long-range Millimeter-Wave Communications. We begin with the design of a high-gain UWB rectangular patch antenna featuring a partial ground plane and operating within the 3.1-10.6 GHz bandwidth. Complementary Split Ring Resonators (CSRRs) are integrated on both sides of the structure to meet desired specifications. The resulting UWB antenna boasts an extended frequency bandwidth, covering 2.38-22.5 GHz (twice that of the original antenna), with a peak gain of 6.5 dBi and an 88% radiation efficiency. The grey wolf optimization technique (GWO) determines optimal structural dimensions. Validation of the antenna's performance is demonstrated through the strong agreement between measurement and simulation.

7.
Sci Rep ; 14(1): 9233, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649457

RESUMEN

The present research applies different statistical analysis and machine learning (ML) approaches to predict and optimize the processing parameters on the wear behavior of ZK30 alloy processed through equal channel angular pressing (ECAP) technique. Firstly, The ECAPed ZK30 billets have been examined at as-annealed (AA), 1-pass, and 4-passes of route Bc (4Bc). Then, the wear output responses in terms of volume loss (VL) and coefficient of friction (COF) have been experimentally investigated by varying load pressure (P) and speed (V) using design of experiments (DOE). In the second step, statistical analysis of variance (ANOVA), 3D response surface plots, and ML have been employed to predict the output responses. Subsequently, genetic algorithm (GA), hybrid DOE-GA, and multi-objective genetic algorithm techniques have been used to optimize the input variables. The experimental results of ECAP process reveal a significant reduction in the average grain size by 92.7% as it processed through 4Bc compared to AA counterpart. Furthermore, 4Bc exhibited a significant improvement in the VL by 99.8% compared to AA counterpart. Both regression and ML prediction models establish a significant correlation between the projected and the actual data, indicating that the experimental and predicted values agreed exceptionally well. The minimal VL at different ECAP passes was obtained at the highest condition of the wear test. Also, the minimal COF for all ECAP passes was obtained at maximum wear load. However, the optimal speed in the wear process decreased with the number of billets passes for minimum COF. The validation of predicted ML models and VL regression under different wear conditions have an accuracy range of 70-99.7%, respectively.

8.
Micromachines (Basel) ; 14(11)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-38004832

RESUMEN

In this paper, a compact and simplified geometry monopole antenna with high gain and wideband is introduced. The presented antenna incorporates a microstrip feedline and a circular patch with two circular rings of stubs, which are inserted into the reference circular patch antenna to enhance the bandwidth and return loss. Roger RT/Duroid 6002 is used as the material for the antenna, and has overall dimensions of WS × LS = 12 mm × 9 mm. Three designs of two-port MIMO configurations are derived from the reference unit element antenna. In the first design, the antenna element is placed parallel to the reference antenna, while in the second design, the element is placed orthogonal to the reference element of the antenna. In the third design, the antenna elements are adjusted to be opposite each other. In this study, we analyze the isolation between the MIMO elements with different arrangements of the elements. The MIMO configurations have dimensions of 15 mm × 26 mm for two of the cases and 15 mm × 28.75 mm for the third case. All three MIMO antennas are made using similar materials and have the same specifications as the single element antenna. Other significant MIMO parameters, including the envelope correlation coefficient (ECC), diversity gain (DG), channel capacity loss (CCL), and mean effective gain (MEG), are also researched. Additionally, the paper includes a table summarizing the assessment of this work in comparison to relevant literature. The results of this study indicate that the proposed antenna is well-suited for future millimeter wave applications operating at 28 GHz.

9.
Micromachines (Basel) ; 14(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004923

RESUMEN

This article presents an antenna with compact and simple geometry and a low profile. Roger RT6002, with a 10 mm × 10 mm dimension, is utilized to engineer this work, offering a wideband and high gain. The antenna structure contains a patch of circular-shaped stubs and a circular stub and slot. These insertions are performed to improve the impedance bandwidth of the antenna. The antenna is investigated, and the results are analyzed in the commercially accessible electromagnetic (EM) software tool High Frequency Structure Simulator (HFSS). Afterwards, a two-port multiple-input-multiple-output (MIMO) antenna is engineered by orthogonalizing the second element to the first element. The antenna offers good value for mutual coupling of less than -20 dB. The decoupling structure or parasitic patch is placed between two MIMO elements for more refined mutual coupling of the proposed MIMO antenna. The resultant antenna offers mutual coupling of less than -32 dB. Moreover, other MIMO parameters like envelop correlation coefficient (ECC), mean effective gain (MEG), diversity gain (DG), and channel capacity loss (CCL) are also studied to recommend antennas for future applications. The hardware model is fabricated and tested to validate the results, which resembles software-generated results. Moreover, the comparison of outcomes and other important parameters is performed using published work. The outcome of this proposed work is performed using already published work. The outcomes and comparison make the presented design the best option for future 5G devices.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38083753

RESUMEN

This paper presents a sensor based localization system to localize active implantable medical devices i.e., Wireless Capsule Endoscopy (WCE). The importance of localizing the capsule arises once the images from the capsule detect the abnormalities in the Gastrointestinal tract (GI). A successful system can determine the location that associated with the abnormality for further medical investigation or treatment. The system proposed in this paper comprises a rotational platform that consists of magnetic sensors to detect the position of the embedded magnet in the capsule. The rotational platform provides advantageousness in terms of reducing the number of the sensors and increasing the monitoring accuracy during the real time movement.


Asunto(s)
Endoscopía Capsular , Endoscopía Capsular/métodos , Tracto Gastrointestinal , Endoscopios en Cápsulas , Prótesis e Implantes , Movimiento
11.
Heliyon ; 9(11): e21419, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37954332

RESUMEN

A simple, compact, and low-profile antenna operating over ultrawideband with high gain is presented in this manuscript. The antenna has dimensions of W × L = 19 mm × 21 mm and is placed on the rear side of the FR-4 substrate material. The antenna contains simple geometry, inspired from a circular fractals, which consists of a circular patch with a CPW feedline. The circular patch is loaded with two fractals patches at both top end of the substrate and the rectangular stub is loaded at the lower side, to improve the antenna's bandwidth. The constructed antenna offers a wide band of 3-13.5 GHz. The antenna geometry also contains three semicircular slots, which are etched to generate the notch bands. Each slot is etched step by step, giving notch bands at 3.9 GHz, 5.2 GHz, and 8.1 GHz. In the final stage, two diodes are added to attain reconfiguration. The antenna offers moderate gain and high radiation efficiency. The hardware model of antenna is engineered to verify the simulated results. Moreover, the antenna is compared with other works in literature. The outcomes of the proposed antenna and comparison with the literature work make the suggested work the best candidate for future UWB portable devices.

12.
Heliyon ; 9(9): e19985, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809980

RESUMEN

The research paper discusses the detailed designing of a compact, simple, and low-profile antenna that provides several desirable features. The antenna is engineered by using a substrate material called Roger 6002, and its dimensions are 12 mm × 6 mm × 1.52 mm. The single antenna element achieves a wideband frequency coverage of 24-30.2 GHz and a high gain of 9 dBi. To enhance the antenna's capabilities, a two-port multiple-input multiple-output (MIMO) configuration is employed by adding a second antenna element orthogonal to the first one. Although the operational band remains the same, the isolation between the two elements is found to be unsatisfactory. A C-shaped decoupling structure is established to address this issue, which effectively improves the isolation. Including the parasitic patch enhances the isolation from -18 dB to -29 dB. An antenna hardware sample is built and tested to validate the recommended work, and the outcomes are compared to the predicted results obtained from the software. The experimental and simulated data exhibit close agreement, confirming the accuracy of the design. Additionally, this outstanding performance in bandwidth and isolation compares with existing literature, presented in the form of a table. Various MIMO parameters are also examined, and it is found that they fall within acceptable ranges. The antenna demonstrates an Envelope Correlation Coefficient (ECC) of approximately 0.005 and a Diversity Gain (DG) of around 9.99 dB. The recommended antenna design is highly suitable for future miniature devices used in Internet of Things (IoT) applications.

13.
Pharmaceutics ; 15(5)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37242631

RESUMEN

Despite the clinical benefits that chemotherapeutics has had on the treatment of breast cancer, drug resistance remains one of the main obstacles to curative cancer therapy. Nanomedicines allow therapeutics to be more targeted and effective, resulting in enhanced treatment success, reduced side effects, and the possibility of minimising drug resistance by the co-delivery of therapeutic agents. Porous silicon nanoparticles (pSiNPs) have been established as efficient vectors for drug delivery. Their high surface area makes them an ideal carrier for the administration of multiple therapeutics, providing the means to apply multiple attacks to the tumour. Moreover, immobilising targeting ligands on the pSiNP surface helps direct them selectively to cancer cells, thereby reducing harm to normal tissues. Here, we engineered breast cancer-targeted pSiNPs co-loaded with an anticancer drug and gold nanoclusters (AuNCs). AuNCs have the capacity to induce hyperthermia when exposed to a radiofrequency field. Using monolayer and 3D cell cultures, we demonstrate that the cell-killing efficacy of combined hyperthermia and chemotherapy via targeted pSiNPs is 1.5-fold higher than applying monotherapy and 3.5-fold higher compared to using a nontargeted system with combined therapeutics. The results not only demonstrate targeted pSiNPs as a successful nanocarrier for combination therapy but also confirm it as a versatile platform with the potential to be used for personalised medicine.

14.
Materials (Basel) ; 15(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36556839

RESUMEN

Copper and its related alloys are frequently adopted in contemporary industry due to their outstanding properties, which include mechanical, electrical, and electronic applications. Equal channel angular pressing (ECAP) is a novel method for producing ultrafine-grained or nanomaterials. Modeling material design processes provides exceptionally efficient techniques for minimizing the efforts and time spent on experimental work to manufacture Cu or its associated alloys through the ECAP process. Although there have been various physical-based models, they are frequently coupled with several restrictions and still require significant time and effort to calibrate and enhance their accuracies. Machine learning (ML) techniques that rely primarily on data-driven models are a viable alternative modeling approach that has recently achieved breakthrough achievements. Several ML algorithms were used in the modeling training and testing phases of this work to imitate the influence of ECAP processing parameters on the mechanical and electrical characteristics of pure Cu, including the number of passes (N), ECAP die angle (φ), processing temperature, and route type. Several experiments were conducted on pure commercial Cu while altering the ECAP processing parameters settings. Linear regression, regression trees, ensembles of regression trees, the Gaussian process, support vector regression, and artificial neural networks are the ML algorithms used in this study. Model predictive performance was assessed using metrics such as root-mean-squared errors and R2 scores. The methodologies presented here demonstrated that they could be effectively used to reduce experimental effort and time by reducing the number of experiments runs required to optimize the material attributes aimed at modeling the ECAP conditions for the following performance characteristics: impact toughness (IT), electrical conductivity (EC), hardness, and tensile characteristics of yield strength (σy), ultimate tensile strength (σu), and ductility (Du).

15.
Physiol Meas ; 42(4)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33706294

RESUMEN

There is significant interest in exploring the human body's internal activities and measuring important parameters to understand, treat and diagnose the digestive system environment and related diseases. Wireless capsule endoscopy (WCE) is widely used for gastrointestinal (GI) tract exploration due to its effectiveness as it provides no pain and is totally tolerated by the patient. Current ingestible sensing technology provides a valuable diagnostic tool to establish a platform for monitoring the physiological and biological activities inside the human body. It is also used for visualizing the GI tract to observe abnormalities by recording the internal cavity while moving. However, the capsule endoscopy is still passive, and there is no successful locomotion method to control its mobility through the whole GI tract. Drug delivery, localization of abnormalities, cost reduction and time consumption are improvements that can be gained from having active ingestible WCEs. In this article, the current technological developments of ingestible devices including sensing, locomotion and navigation are discussed and compared. The main features required to implement next-generation active WCEs are explored. The methods are evaluated in terms of the most important features such as safety, velocity, complexity of design, control, and power consumption.


Asunto(s)
Endoscopía Capsular , Humanos , Locomoción
16.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3315-3318, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946591

RESUMEN

Navigation is an important feature needed for medical insertion procedures. It is required to guide the medical device in the right direction at the right time. Navigation techniques used in the Wireless Capsule Endoscopy and conventional endoscopy fields are based on image-guided systems that require a large amount of data to be transferred and processed computationally. These issues increase system complexity as well as the overall system and procedure costs. Moreover, these systems cannot provide the required information in dark or liquid areas. To improve the medical internal inspections capabilities, we present a pressure direction measurement system that can be implemented for a capsule endoscope; ordinary endoscopy; and any other insertion procedure where navigation and safety are required. The system can operate in dark and liquid areas because no visualization is required. The system consists of a pressure sensor placed on a semi-hemisphere on top of the steering device to detect azimuth and polar angle variation according to the direction at any differentiable path.


Asunto(s)
Endoscopios en Cápsulas , Endoscopía Capsular , Automatización , Presión
17.
IEEE J Transl Eng Health Med ; 6: 1800710, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29888143

RESUMEN

Conventional radiological and endoscopic techniques utilizing long tubes were ineffective in visualizing the small bowel mucosa until the development of wireless capsule endoscopy (WCE). WCE is a revolutionary endoscopic technology that can diagnose the complete gastrointestinal tract. However, the existing capsule technologies are passive, and thus they cannot be navigated to or held in a specific location. The design of an active capsule will present the opportunity to move and stop a device at any targeted locations leading to numerous medical applications such as drug delivery or collecting tissue samples for examinations in the laboratory. This paper implements a new locomotion methodology for WCE systems using an electromagnetic platform. The platform produces a dynamic electromagnetic field to control the motion of the capsule. The strength and the direction of the electromagnetic field that is generated by the platform are continuously adjusted in order to maintain the equilibrium state during the capsule movement. We present the detailed design of the proposed platform with an experimental setup with polyvinyl chloride tubes and ex vivo to demonstrate the performance of the capsule motion.

18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 3036-3039, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29060538

RESUMEN

In this paper, a new steering mechanism for wireless capsule devices is presented. The proposed system consists of a platform generating a magnetic field to direct and control the motion of a capsule. The platform contains an upper and a lower set of electromagnets. A permanent magnet is implanted inside the capsule to initiate the movement, which is set by the magnetic field delivered by the electromagnets. The total magnetic field at the capsule's location is the sum of the contributions of each electromagnet. An experimental setup has been designed for testing and comparing between the performance of the capsule mobility in practice and simulations.


Asunto(s)
Endoscopía Capsular , Endoscopios en Cápsulas , Diseño de Equipo , Campos Magnéticos , Movimiento (Física)
19.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 219-222, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28268316

RESUMEN

This paper describes a new method to control the motion of swallowable wireless capsule endoscopy devices. A dynamic magnetic field produced by a set of external magnetic coils is used to manage the locomotion of the capsule. A permanent magnet is embedded into the capsule in order to manipulate the capsule by changing the external magnetic field strength for each specific position. The dynamic magnetic field is externally controlled to reach and maintain the equilibrium state for holding the capsule in a specific location. This is achieved by keeping the net force of magnetic fields zero. To start the mobility, the magnetic field from one of the external field sources will be reduced for a certain amount of time by sending an OFF-pulse (a current source). The required forces and the pulses are controlled by a specific algorithm to control the step size of the movement in order to achieve precise motion at any chosen velocity. The proposed method is designed to provide a precise motion control with a system extremely low in complexity.


Asunto(s)
Campos Electromagnéticos , Locomoción , Robótica/métodos , Algoritmos , Simulación por Computador , Diseño de Equipo , Humanos , Campos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA