RESUMEN
Fertilization in mammals is accompanied by an intense period of chromatin remodeling and major changes in nuclear organization. How the earliest events in embryogenesis, including zygotic genome activation (ZGA) during maternal-to-zygotic transition, influence such remodeling remains unknown. Here, we have investigated the establishment of nuclear architecture, focusing on the remodeling of lamina-associated domains (LADs) during this transition. We report that LADs reorganize gradually in two-cell embryos and that blocking ZGA leads to major changes in nuclear organization, including altered chromatin and genomic features of LADs and redistribution of H3K4me3 toward the nuclear lamina. Our data indicate that the rearrangement of LADs is an integral component of the maternal-to-zygotic transition and that transcription contributes to shaping nuclear organization at the beginning of mammalian development.
Asunto(s)
ARN Polimerasa II , Transcripción Genética , Animales , Ratones , ARN Polimerasa II/genética , Desarrollo Embrionario/genética , Cigoto , Mamíferos/genética , Regulación del Desarrollo de la Expresión Génica , CromatinaRESUMEN
DNA replication enables genetic inheritance across the kingdoms of life. Replication occurs with a defined temporal order known as the replication timing (RT) programme, leading to organization of the genome into early- or late-replicating regions. RT is cell-type specific, is tightly linked to the three-dimensional nuclear organization of the genome1,2 and is considered an epigenetic fingerprint3. In spite of its importance in maintaining the epigenome4, the developmental regulation of RT in mammals in vivo has not been explored. Here, using single-cell Repli-seq5, we generated genome-wide RT maps of mouse embryos from the zygote to the blastocyst stage. Our data show that RT is initially not well defined but becomes defined progressively from the 4-cell stage, coinciding with strengthening of the A and B compartments. We show that transcription contributes to the precision of the RT programme and that the difference in RT between the A and B compartments depends on RNA polymerase II at zygotic genome activation. Our data indicate that the establishment of nuclear organization precedes the acquisition of defined RT features and primes the partitioning of the genome into early- and late-replicating domains. Our work sheds light on the establishment of the epigenome at the beginning of mammalian development and reveals the organizing principles of genome organization.
Asunto(s)
Momento de Replicación del ADN , Embrión de Mamíferos , Genoma , Animales , Ratones , Blastocisto/citología , Blastocisto/metabolismo , Cromatina/genética , Epigenoma/genética , Genoma/genética , ARN Polimerasa II/metabolismo , Cigoto/citología , Cigoto/crecimiento & desarrollo , Cigoto/metabolismo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismoRESUMEN
Mitosis leads to global downregulation of transcription that then needs to be efficiently resumed. In somatic cells, this is mediated by a transient hyper-active state that first reactivates housekeeping and then cell identity genes. Here, we show that mouse embryonic stem cells, which display rapid cell cycles and spend little time in G1, also display accelerated reactivation dynamics. This uniquely fast global reactivation lacks specificity towards functional gene families, enabling the restoration of all regulatory functions before DNA replication. Genes displaying the fastest reactivation are bound by CTCF, a mitotic bookmarking transcription factor. In spite of this, the post-mitotic global burst is robust and largely insensitive to CTCF depletion. There are, however, around 350 genes that respond to CTCF depletion rapidly after mitotic exit. Remarkably, these are characterised by promoter-proximal mitotic bookmarking by CTCF. We propose that the structure of the cell cycle imposes distinct constrains to post-mitotic gene reactivation dynamics in different cell types, via mechanisms that are yet to be identified but that can be modulated by mitotic bookmarking factors.
Asunto(s)
Células Madre Embrionarias de Ratones , Factores de Transcripción , Animales , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Ciclo Celular , Células Madre Embrionarias/metabolismo , Mitosis/genética , CromatinaRESUMEN
Transcription factors (TFs) are important drivers of cellular decision-making. When bacteria encounter a change in the environment, TFs alter the expression of a defined set of genes in order to adequately respond. It is commonly assumed that genes regulated by the same TF are involved in the same biological process. Examples of this are methods that rely on coregulation to infer function of not-yet-annotated genes. We have previously shown that only 21% of TFs involved in metabolism regulate functionally homogeneous genes, based on the proximity of the gene products' catalyzed reactions in the metabolic network. Here, we provide more evidence to support the claim that a 1-TF/1-process relationship is not a general property. We show that the observed functional heterogeneity of regulons is not a result of the quality of the annotation of regulatory interactions, nor the absence of protein-metabolite interactions, and that it is also present when function is defined by Gene Ontology terms. Furthermore, the observed functional heterogeneity is different from the one expected by chance, supporting the notion that it is a biological property. To further explore the relationship between transcriptional regulation and metabolism, we analyzed five other types of regulatory groups and identified complex regulons (i.e. genes regulated by the same combination of TFs) as the most functionally homogeneous, and this is supported by coexpression data. Whether higher levels of related functions exist beyond metabolism and current functional annotations remains an open question.
Asunto(s)
Proteínas de Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Regulón/fisiología , Factores de Transcripción/fisiología , Enzimas/genética , Enzimas/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Ontología de Genes , Redes Reguladoras de Genes/genética , Redes y Vías Metabólicas , Regulón/genéticaRESUMEN
Totipotency emerges in early embryogenesis, but its molecular underpinnings remain poorly characterized. In the present study, we employed DNA fiber analysis to investigate how pluripotent stem cells are reprogrammed into totipotent-like 2-cell-like cells (2CLCs). We show that totipotent cells of the early mouse embryo have slow DNA replication fork speed and that 2CLCs recapitulate this feature, suggesting that fork speed underlies the transition to a totipotent-like state. 2CLCs emerge concomitant with DNA replication and display changes in replication timing (RT), particularly during the early S-phase. RT changes occur prior to 2CLC emergence, suggesting that RT may predispose to gene expression changes and consequent reprogramming of cell fate. Slowing down replication fork speed experimentally induces 2CLCs. In vivo, slowing fork speed improves the reprogramming efficiency of somatic cell nuclear transfer. Our data suggest that fork speed regulates cellular plasticity and that remodeling of replication features leads to changes in cell fate and reprogramming.
Asunto(s)
Embrión de Mamíferos , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Reprogramación Celular/genética , Replicación del ADN/genética , Desarrollo Embrionario/genética , RatonesRESUMEN
Acinetobacter baumannii is an emergent bacterial pathogen that provokes many types of infections in hospitals around the world. The genome of this organism consists of a chromosome and plasmids. These plasmids vary over a wide size range and many of them have been linked to the acquisition of antibiotic-resistance genes. Our bioinformatic analyses indicate that A. baumannii plasmids belong to a small number of plasmid lineages. The general structure of these lineages seems to be very stable and consists not only of genes involved in plasmid maintenance functions but of gene sets encoding poorly characterized proteins, not obviously linked to survival in the hospital setting, and opening the possibility that they improve the parasitic properties of plasmids. An analysis of genes involved in replication, suggests that members of the same plasmid lineage are part of the same plasmid incompatibility group. The same analysis showed the necessity of classifying the Rep proteins in ten new groups, under the scheme proposed by Bertini et al. (2010). Also, we show that some plasmid lineages have the potential capacity to replicate in many bacterial genera including those embracing human pathogen species, while others seem to replicate only within the limits of the Acinetobacter genus. Moreover, some plasmid lineages are widely distributed along the A. baumannii phylogenetic tree. Despite this, a number of them lack genes involved in conjugation or mobilization functions. Interestingly, only 34.6% of the plasmids analyzed here possess antibiotic resistance genes and most of them belong to fourteen plasmid lineages of the twenty one described here. Gene flux between plasmid lineages appears primarily limited to transposable elements, which sometimes carry antibiotic resistance genes. In most plasmid lineages transposable elements and antibiotic resistance genes are secondary acquisitions. Finally, broad host-range plasmids appear to have played a crucial role.