Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 630(8015): 230-236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811725

RESUMEN

Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1,2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle.


Asunto(s)
Amoníaco , Organismos Acuáticos , Archaea , Membrana Celular , Amoníaco/química , Amoníaco/metabolismo , Organismos Acuáticos/química , Organismos Acuáticos/metabolismo , Organismos Acuáticos/ultraestructura , Archaea/química , Archaea/metabolismo , Archaea/ultraestructura , Cationes/química , Cationes/metabolismo , Microscopía por Crioelectrón , Modelos Moleculares , Oxidación-Reducción , Polisacáridos/metabolismo , Polisacáridos/química
2.
Nucleic Acids Res ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864377

RESUMEN

Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.


Histones, traditionally known for organizing and regulating DNA in eukaryotes and archaea, have recently been discovered in bacteria, opening up a new frontier in our understanding of genome organization across the domains of life. Our study investigates the largely unexplored DNA-binding properties of bacterial histones, focusing on HBb in Bdellovibrio bacteriovorus. We reveal that HBb is essential for bacterial survival and exhibits DNA-binding properties similar to archaeal and eukaryotic histones. However, unlike eukaryotic and archaeal histones, which wrap DNA, HBb bends DNA without sequence specificity. This work not only broadens our understanding of DNA organization across different life forms but also suggests that bacterial histones may have diverse roles in genome organization.

3.
Proc Natl Acad Sci U S A ; 120(16): e2215808120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37043530

RESUMEN

Deinococcus radiodurans is an atypical diderm bacterium with a remarkable ability to tolerate various environmental stresses, due in part to its complex cell envelope encapsulated within a hyperstable surface layer (S-layer). Despite decades of research on this cell envelope, atomic structural details of the S-layer have remained obscure. In this study, we report the electron cryomicroscopy structure of the D. radiodurans S-layer, showing how it is formed by the Hexagonally Packed Intermediate-layer (HPI) protein arranged in a planar hexagonal lattice. The HPI protein forms an array of immunoglobulin-like folds within the S-layer, with each monomer extending into the adjacent hexamer, resulting in a highly interconnected, stable, sheet-like arrangement. Using electron cryotomography and subtomogram averaging from focused ion beam-milled D. radiodurans cells, we have obtained a structure of the cellular S-layer, showing how this HPI S-layer coats native membranes on the surface of cells. Our S-layer structure from the diderm bacterium D. radiodurans shows similarities to immunoglobulin-like domain-containing S-layers from monoderm bacteria and archaea, highlighting common features in cell surface organization across different domains of life, with connotations on the evolution of immunoglobulin-based molecular recognition systems in eukaryotes.


Asunto(s)
Proteínas Bacterianas , Deinococcus , Proteínas Bacterianas/metabolismo , Deinococcus/química , Membrana Celular/metabolismo , Pared Celular/metabolismo , Inmunoglobulinas/metabolismo
4.
PLoS Pathog ; 19(4): e1011177, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37058467

RESUMEN

Chaperone-Usher Pathway (CUP) pili are major adhesins in Gram-negative bacteria, mediating bacterial adherence to biotic and abiotic surfaces. While classical CUP pili have been extensively characterized, little is known about so-called archaic CUP pili, which are phylogenetically widespread and promote biofilm formation by several human pathogens. In this study, we present the electron cryomicroscopy structure of the archaic CupE pilus from the opportunistic human pathogen Pseudomonas aeruginosa. We show that CupE1 subunits within the pilus are arranged in a zigzag architecture, containing an N-terminal donor ß-strand extending from each subunit into the next, where it is anchored by hydrophobic interactions, with comparatively weaker interactions at the rest of the inter-subunit interface. Imaging CupE pili on the surface of P. aeruginosa cells using electron cryotomography shows that CupE pili adopt variable curvatures in response to their environment, which might facilitate their role in promoting cellular attachment. Finally, bioinformatic analysis shows the widespread abundance of cupE genes in isolates of P. aeruginosa and the co-occurrence of cupE with other cup clusters, suggesting interdependence of cup pili in regulating bacterial adherence within biofilms. Taken together, our study provides insights into the architecture of archaic CUP pili, providing a structural basis for understanding their role in promoting cellular adhesion and biofilm formation in P. aeruginosa.


Asunto(s)
Fimbrias Bacterianas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/metabolismo , Fimbrias Bacterianas/metabolismo , Biopelículas , Adhesinas Bacterianas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Fimbrias/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(33): e2203156119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35943982

RESUMEN

Deinococcus radiodurans is a phylogenetically deep-branching extremophilic bacterium that is remarkably tolerant to numerous environmental stresses, including large doses of ultraviolet (UV) radiation and extreme temperatures. It can even survive in outer space for several years. This endurance of D. radiodurans has been partly ascribed to its atypical cell envelope comprising an inner membrane, a large periplasmic space with a thick peptidoglycan (PG) layer, and an outer membrane (OM) covered by a surface layer (S-layer). Despite intense research, molecular principles governing envelope organization and OM stabilization are unclear in D. radiodurans and related bacteria. Here, we report a electron cryomicroscopy (cryo-EM) structure of the abundant D. radiodurans OM protein SlpA, showing how its C-terminal segment forms homotrimers of 30-stranded ß-barrels in the OM, whereas its N-terminal segment forms long, homotrimeric coiled coils linking the OM to the PG layer via S-layer homology (SLH) domains. Furthermore, using protein structure prediction and sequence-based bioinformatic analysis, we show that SlpA-like putative OM-PG connector proteins are widespread in phylogenetically deep-branching Gram-negative bacteria. Finally, combining our atomic structures with fluorescence and electron microscopy of cell envelopes of wild-type and mutant bacterial strains, we report a model for the cell surface of D. radiodurans. Our results will have important implications for understanding the cell surface organization and hyperstability of D. radiodurans and related bacteria and the evolutionary transition between Gram-negative and Gram-positive bacteria.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas Bacterianas , Pared Celular , Deinococcus , Membrana Externa Bacteriana/química , Proteínas de la Membrana Bacteriana Externa/química , Proteínas Bacterianas/química , Pared Celular/química , Microscopía por Crioelectrón , Deinococcus/química , Deinococcus/clasificación , Peptidoglicano/química , Filogenia , Dominios Proteicos
6.
Bioinformatics ; 39(10)2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37725369

RESUMEN

MOTIVATION: The detection of homology through sequence comparison is a typical first step in the study of protein function and evolution. In this work, we explore the applicability of protein language models to this task. RESULTS: We introduce pLM-BLAST, a tool inspired by BLAST, that detects distant homology by comparing single-sequence representations (embeddings) derived from a protein language model, ProtT5. Our benchmarks reveal that pLM-BLAST maintains a level of accuracy on par with HHsearch for both highly similar sequences (with >50% identity) and markedly divergent sequences (with <30% identity), while being significantly faster. Additionally, pLM-BLAST stands out among other embedding-based tools due to its ability to compute local alignments. We show that these local alignments, produced by pLM-BLAST, often connect highly divergent proteins, thereby highlighting its potential to uncover previously undiscovered homologous relationships and improve protein annotation. AVAILABILITY AND IMPLEMENTATION: pLM-BLAST is accessible via the MPI Bioinformatics Toolkit as a web server for searching precomputed databases (https://toolkit.tuebingen.mpg.de/tools/plmblast). It is also available as a standalone tool for building custom databases and performing batch searches (https://github.com/labstructbioinf/pLM-BLAST).


Asunto(s)
Proteínas , Programas Informáticos , Secuencia de Aminoácidos , Alineación de Secuencia , Proteínas/genética , Anotación de Secuencia Molecular
7.
Proc Natl Acad Sci U S A ; 117(9): 4701-4709, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32079721

RESUMEN

Proteins' interactions with ancient ligands may reveal how molecular recognition emerged and evolved. We explore how proteins recognize adenine: a planar rigid fragment found in the most common and ancient ligands. We have developed a computational pipeline that extracts protein-adenine complexes from the Protein Data Bank, structurally superimposes their adenine fragments, and detects the hydrogen bonds mediating the interaction. Our analysis extends the known motifs of protein-adenine interactions in the Watson-Crick edge of adenine and shows that all of adenine's edges may contribute to molecular recognition. We further show that, on the proteins' side, binding is often mediated by specific amino acid segments ("themes") that recur across different proteins, such that different proteins use the same themes when binding the same adenine-containing ligands. We identify numerous proteins that feature these themes and are thus likely to bind adenine-containing ligands. Our analysis suggests that adenine binding has emerged multiple times in evolution.


Asunto(s)
Adenina/metabolismo , Evolución Molecular , Simulación del Acoplamiento Molecular/métodos , Conformación Proteica , Adenina/química , Sitios de Unión , Enlace de Hidrógeno , Unión Proteica , Análisis de Secuencia de Proteína/métodos , Programas Informáticos
8.
Bioinformatics ; 37(24): 4694-4703, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34323935

RESUMEN

MOTIVATION: The proteasome is the main proteolytic machine for targeted protein degradation in archaea and eukaryotes. While some bacteria also possess the proteasome, most of them contain a simpler and more specialized homolog, the heat shock locus V protease. In recent years, three further homologs of the proteasome core subunits have been characterized in prokaryotes: Anbu, BPH and connectase. With the inclusion of these members, the family of proteasome-like proteins now exhibits a range of architectural and functional forms, from the canonical proteasome, a barrel-shaped protease without pronounced intrinsic substrate specificity, to the monomeric connectase, a highly specific protein ligase. RESULTS: We employed systematic sequence searches to show that we have only seen the tip of the iceberg so far and that beyond the hitherto known proteasome homologs lies a wealth of distantly related, uncharacterized homologs. We describe a total of 22 novel proteasome homologs in bacteria and archaea. Using sequence and structure analysis, we analyze their evolutionary history and assess structural differences that may modulate their function. With this initial description, we aim to stimulate the experimental investigation of these novel proteasome-like family members. AVAILABILITY AND IMPLEMENTATION: The protein sequences in this study are searchable in the MPI Bioinformatics Toolkit (https://toolkit.tuebingen.mpg.de) with ProtBLAST/PSI-BLAST and with HHpred (database 'proteasome_homologs'). The following data are available at https://data.mendeley.com/datasets/t48yhff7hs/3: (i) sequence alignments for each proteasome-like homolog, (ii) the coordinates for their structural models and (iii) a cluster-map file, which can be navigated interactively in CLANS and gives direct access to all the sequences in this study. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteínas , Complejo de la Endopetidasa Proteasomal/química , Proteínas/química , Secuencia de Aminoácidos , Bacterias/metabolismo , Evolución Biológica , Archaea/metabolismo
9.
Biochem J ; 478(10): 1885-1890, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34029366

RESUMEN

Proteins are the essential agents of all living systems. Even though they are synthesized as linear chains of amino acids, they must assume specific three-dimensional structures in order to manifest their biological activity. These structures are fully specified in their amino acid sequences - and therefore in the nucleotide sequences of their genes. However, the relationship between sequence and structure, known as the protein folding problem, has remained elusive for half a century, despite sustained efforts. To measure progress on this problem, a series of doubly blind, biennial experiments called CASP (critical assessment of structure prediction) were established in 1994. We were part of the assessment team for the most recent CASP experiment, CASP14, where we witnessed an astonishing breakthrough by DeepMind, the leading artificial intelligence laboratory of Alphabet Inc. The models filed by DeepMind's structure prediction team using the program AlphaFold2 were often essentially indistinguishable from experimental structures, leading to a consensus in the community that the structure prediction problem for single protein chains has been solved. Here, we will review the path to CASP14, outline the method employed by AlphaFold2 to the extent revealed, and discuss the implications of this breakthrough for the life sciences.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/metabolismo , Inteligencia Artificial , Biología Computacional/métodos , Programas Informáticos , Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , Pliegue de Proteína
10.
EMBO Rep ; 20(8): e47182, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286648

RESUMEN

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas/genética , Proteínas de la Membrana/genética , Plasmodesmos/genética , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplásmico/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Glicosiltransferasas/deficiencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas de la Membrana/deficiencia , Fosfolípidos/metabolismo , Células Vegetales , Plantas Modificadas Genéticamente , Plasmodesmos/metabolismo , Plasmodesmos/ultraestructura , Dominios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Nicotiana/genética , Nicotiana/metabolismo , Proteína Fluorescente Roja
12.
BMC Evol Biol ; 20(1): 162, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33297953

RESUMEN

BACKGROUND: The huntingtin-associated protein 40 (HAP40) abundantly interacts with huntingtin (HTT), the protein that is altered in Huntington's disease (HD). Therefore, we analysed the evolution of HAP40 and its interaction with HTT. RESULTS: We found that in amniotes HAP40 is encoded by a single-exon gene, whereas in all other organisms it is expressed from multi-exon genes. HAP40 co-occurs with HTT in unikonts, including filastereans such as Capsaspora owczarzaki and the amoebozoan Dictyostelium discoideum, but both proteins are absent from fungi. Outside unikonts, a few species, such as the free-living amoeboflagellate Naegleria gruberi, contain putative HTT and HAP40 orthologs. Biochemically we show that the interaction between HTT and HAP40 extends to fish, and bioinformatic analyses provide evidence for evolutionary conservation of this interaction. The closest homologue of HAP40 in current protein databases is the family of soluble N-ethylmaleimide-sensitive factor attachment proteins (SNAPs). CONCLUSION: Our results indicate that the transition from a multi-exon to a single-exon gene appears to have taken place by retroposition during the divergence of amphibians and amniotes, followed by the loss of the parental multi-exon gene. Furthermore, it appears that the two proteins probably originated at the root of eukaryotes. Conservation of the interaction between HAP40 and HTT and their likely coevolution strongly indicate functional importance of this interaction.


Asunto(s)
Dictyostelium , Eucariontes , Proteína Huntingtina , Enfermedad de Huntington , Proteínas Nucleares , Animales , Eucariontes/clasificación , Eucariontes/genética , Evolución Molecular , Proteína Huntingtina/genética , Proteínas Nucleares/genética
13.
RNA ; 24(3): 381-395, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29255063

RESUMEN

Drosophila melanogaster Bag-of-marbles (Bam) promotes germline stem cell (GSC) differentiation by repressing the expression of mRNAs encoding stem cell maintenance factors. Bam interacts with Benign gonial cell neoplasm (Bgcn) and the CCR4 deadenylase, a catalytic subunit of the CCR4-NOT complex. Bam has been proposed to bind CCR4 and displace it from the CCR4-NOT complex. Here, we investigated the interaction of Bam with the CCR4-NOT complex by using purified recombinant proteins. Unexpectedly, we found that Bam does not interact with CCR4 directly but instead binds to the CAF40 subunit of the complex in a manner mediated by a conserved N-terminal CAF40-binding motif (CBM). The crystal structure of the Bam CBM bound to CAF40 reveals that the CBM peptide adopts an α-helical conformation after binding to the concave surface of the crescent-shaped CAF40 protein. We further show that Bam-mediated mRNA decay and translational repression depend entirely on Bam's interaction with CAF40. Thus, Bam regulates the expression of its mRNA targets by recruiting the CCR4-NOT complex through interaction with CAF40.


Asunto(s)
Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Estabilidad del ARN , Ribonucleasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Diferenciación Celular , Línea Celular , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Células Germinativas/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Proteínas de Unión al ARN , Ribonucleasas/química , Ribonucleasas/genética , Alineación de Secuencia , Células Madre/metabolismo
14.
Bioinformatics ; 35(14): 2349-2353, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30520969

RESUMEN

MOTIVATION: Histones form octameric complexes called nucleosomes, which organize the genomic DNA of eukaryotes into chromatin. Each nucleosome comprises two copies each of the histones H2A, H2B, H3 and H4, which share a common ancestry. Although histones were initially thought to be a eukaryotic innovation, the subsequent identification of archaeal homologs led to the notion that histones emerged before the divergence of archaea and eukaryotes. RESULTS: Here, we report the detection and classification of two new groups of histone homologs, which are present in both archaea and bacteria. Proteins in one group consist of two histone subunits welded into single-chain pseudodimers, whereas in the other they resemble eukaryotic core histone subunits and show sequence patterns characteristic of DNA binding. The sequences come from a broad spectrum of deeply-branching lineages, excluding their genesis by horizontal gene transfer. Our results extend the origin of histones to the last universal common ancestor. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Archaea , Bacterias , Histonas , Nucleosomas
15.
Bioinformatics ; 35(16): 2790-2795, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30601942

RESUMEN

MOTIVATION: Coiled coils are protein structural domains that mediate a plethora of biological interactions, and thus their reliable annotation is crucial for studies of protein structure and function. RESULTS: Here, we report DeepCoil, a new neural network-based tool for the detection of coiled-coil domains in protein sequences. In our benchmarks, DeepCoil significantly outperformed current state-of-the-art tools, such as PCOILS and Marcoil, both in the prediction of canonical and non-canonical coiled coils. Furthermore, in a scan of the human genome with DeepCoil, we detected many coiled-coil domains that remained undetected by other methods. This higher sensitivity of DeepCoil should make it a method of choice for accurate genome-wide detection of coiled-coil domains. AVAILABILITY AND IMPLEMENTATION: DeepCoil is written in Python and utilizes the Keras machine learning library. A web server is freely available at https://toolkit.tuebingen.mpg.de/#/tools/deepcoil and a standalone version can be downloaded at https://github.com/labstructbioinf/DeepCoil. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Secuencia de Aminoácidos , Humanos , Aprendizaje Automático , Dominios Proteicos , Proteínas
16.
Nucleic Acids Res ; 44(W1): W410-5, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27131380

RESUMEN

The MPI Bioinformatics Toolkit (http://toolkit.tuebingen.mpg.de) is an open, interactive web service for comprehensive and collaborative protein bioinformatic analysis. It offers a wide array of interconnected, state-of-the-art bioinformatics tools to experts and non-experts alike, developed both externally (e.g. BLAST+, HMMER3, MUSCLE) and internally (e.g. HHpred, HHblits, PCOILS). While a beta version of the Toolkit was released 10 years ago, the current production-level release has been available since 2008 and has serviced more than 1.6 million external user queries. The usage of the Toolkit has continued to increase linearly over the years, reaching more than 400 000 queries in 2015. In fact, through the breadth of its tools and their tight interconnection, the Toolkit has become an excellent platform for experimental scientists as well as a useful resource for teaching bioinformatic inquiry to students in the life sciences. In this article, we report on the evolution of the Toolkit over the last ten years, focusing on the expansion of the tool repertoire (e.g. CS-BLAST, HHblits) and on infrastructural work needed to remain operative in a changing web environment.


Asunto(s)
Biología Computacional/métodos , Internet , Proteínas/química , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Biología Computacional/educación , Biología Computacional/tendencias , Anotación de Secuencia Molecular , Dominios Proteicos , Proteínas/clasificación , Análisis de Secuencia de Proteína/estadística & datos numéricos , Análisis de Secuencia de Proteína/tendencias , Programas Informáticos/tendencias , Enseñanza
17.
J Struct Biol ; 198(2): 74-81, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28454764

RESUMEN

For the most part, contemporary proteins can be traced back to a basic set of a few thousand domain prototypes, many of which were already established in the Last Universal Common Ancestor of life on Earth, around 3.5 billion years ago. The origin of these domain prototypes, however, remains poorly understood. One hypothesis posits that they arose from an ancestral set of peptides, which acted as cofactors of RNA-mediated catalysis and replication. Initially, these peptides were entirely dependent on the RNA scaffold for their structure, but as their complexity increased, they became able to form structures by excluding water through hydrophobic contacts, making them independent of the RNA scaffold. Their ability to fold was thus an emergent property of peptide-RNA coevolution. The ribosome is the main survivor of this primordial RNA world and offers an excellent model system for retracing the steps that led to the folded proteins of today, due to its very slow rate of change. Close to the peptidyl transferase center, which is the oldest part of the ribosome, proteins are extended and largely devoid of secondary structure; further from the center, their secondary structure content increases and supersecondary topologies become common, although the proteins still largely lack a hydrophobic core; at the ribosomal periphery, supersecondary structures coalesce around hydrophobic cores, forming folds that resemble those seen in proteins of the cytosol. Collectively, ribosomal proteins thus offer a window onto the time when proteins were acquiring the ability to fold.


Asunto(s)
Evolución Molecular , Origen de la Vida , Pliegue de Proteína , Proteínas Ribosómicas/química , Péptidos/química , Conformación Proteica
18.
Biochim Biophys Acta ; 1861(8 Pt B): 913-923, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26825693

RESUMEN

The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel ß-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on lipids endogenous to the cell, and the BPI-like proteins (including the Takeout-like proteins of arthropods), which act on exogenous lipids. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.


Asunto(s)
Células Eucariotas/metabolismo , Proteínas de Unión a Ácidos Grasos/fisiología , Metabolismo de los Lípidos , Proteínas de Fase Aguda/química , Proteínas de Fase Aguda/fisiología , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/fisiología , Transporte Biológico/genética , Proteínas Sanguíneas/química , Proteínas Sanguíneas/fisiología , Proteínas Portadoras/química , Proteínas Portadoras/fisiología , Proteínas de Transferencia de Ésteres de Colesterol/química , Proteínas de Transferencia de Ésteres de Colesterol/fisiología , Proteínas de Unión a Ácidos Grasos/química , Humanos , Metabolismo de los Lípidos/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/fisiología , Modelos Moleculares , Familia de Multigenes/fisiología , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/fisiología , Filogenia
19.
Curr Opin Microbiol ; 79: 102453, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38678827

RESUMEN

Members of the PII superfamily are versatile, multitasking signaling proteins ubiquitously found in all domains of life. They adeptly monitor and synchronize the cell's carbon, nitrogen, energy, redox, and diurnal states, primarily by binding interdependently to adenyl-nucleotides, including charged nucleotides (ATP, ADP, and AMP) and second messengers such as cyclic adenosine monophosphate (cAMP), cyclic di-adenosine monophosphate (c-di-AMP), and S-adenosylmethionine-AMP (SAM-AMP). These proteins also undergo a variety of posttranslational modifications, such as phosphorylation, adenylation, uridylation, carboxylation, and disulfide bond formation, which further provide cues on the metabolic state of the cell. Serving as precise metabolic sensors, PII superfamily proteins transmit this information to diverse cellular targets, establishing dynamic regulatory assemblies that fine-tune cellular homeostasis. Recently discovered, PII-like proteins are emerging families of signaling proteins that, while related to canonical PII proteins, have evolved to fulfill a diverse range of cellular functions, many of which remain elusive. In this review, we focus on the evolution of PII-like proteins and summarize the molecular mechanisms governing the assembly dynamics of PII complexes, with a special emphasis on the PII-like protein SbtB.


Asunto(s)
Homeostasis , Transducción de Señal , Proteínas PII Reguladoras del Nitrógeno/metabolismo , Proteínas PII Reguladoras del Nitrógeno/genética , Procesamiento Proteico-Postraduccional , Bacterias/metabolismo , Bacterias/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
20.
Science ; 383(6689): eadk5466, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38513029

RESUMEN

In many eukaryotes, genetic sex determination is not governed by XX/XY or ZW/ZZ systems but by a specialized region on the poorly studied U (female) or V (male) sex chromosomes. Previous studies have hinted at the existence of a dominant male-sex factor on the V chromosome in brown algae, a group of multicellular eukaryotes distantly related to animals and plants. The nature of this factor has remained elusive. Here, we demonstrate that an HMG-box gene acts as the male-determining factor in brown algae, mirroring the role HMG-box genes play in sex determination in animals. Over a billion-year evolutionary timeline, these lineages have independently co-opted the HMG box for male determination, representing a paradigm for evolution's ability to recurrently use the same genetic "toolkit" to accomplish similar tasks.


Asunto(s)
Algas Comestibles , Proteínas HMGB , Laminaria , Phaeophyceae , Cromosomas Sexuales , Procesos de Determinación del Sexo , Animales , Evolución Biológica , Phaeophyceae/genética , Cromosomas Sexuales/genética , Procesos de Determinación del Sexo/genética , Cromosoma Y , Proteínas HMGB/genética , Cromosomas de las Plantas/genética , Dominios HMG-Box , Algas Comestibles/genética , Laminaria/genética , Polen/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA