Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Plant Cell ; 26(1): 296-309, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24399300

RESUMEN

Whereas our knowledge about the diverse pathways aiding DNA repair upon genome damage is steadily increasing, little is known about the molecular players that adjust the plant cell cycle in response to DNA stress. By a meta-analysis of DNA stress microarray data sets, three family members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) class of cyclin-dependent kinase inhibitors were discovered that react strongly to genotoxicity. Transcriptional reporter constructs corroborated specific and strong activation of the three SIM/SMR genes in the meristems upon DNA stress, whereas overexpression analysis confirmed their cell cycle inhibitory potential. In agreement with being checkpoint regulators, SMR5 and SMR7 knockout plants displayed an impaired checkpoint in leaf cells upon treatment with the replication inhibitory drug hydroxyurea (HU). Surprisingly, HU-induced SMR5/SMR7 expression depends on ATAXIA TELANGIECTASIA MUTATED (ATM) and SUPPRESSOR OF GAMMA RESPONSE1, rather than on the anticipated replication stress-activated ATM AND RAD3-RELATED kinase. This apparent discrepancy was explained by demonstrating that, in addition to its effect on replication, HU triggers the formation of reactive oxygen species (ROS). ROS-dependent transcriptional activation of the SMR genes was confirmed by different ROS-inducing conditions, including high-light treatment. We conclude that the identified SMR genes are part of a signaling cascade that induces a cell cycle checkpoint in response to ROS-induced DNA damage.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Proteínas de Ciclo Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Daño del ADN , Especies Reactivas de Oxígeno/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Hidroxiurea/farmacología , Estrés Oxidativo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
2.
Plant Cell ; 23(10): 3671-83, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22003076

RESUMEN

Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Ciclo Celular/fisiología , Factores de Transcripción E2F/genética , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Raíces de Plantas/citología , Raíces de Plantas/genética , Haz Vascular de Plantas/citología , Haz Vascular de Plantas/genética , Haz Vascular de Plantas/fisiología , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Transducción de Señal/fisiología , Nicotiana/genética , Nicotiana/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
3.
Plant Cell ; 23(12): 4394-410, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22167059

RESUMEN

The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin ligase that regulates progression through the cell cycle by marking key cell division proteins for destruction. To ensure correct cell cycle progression, accurate timing of APC/C activity is important, which is obtained through its association with both activating and inhibitory subunits. However, although the APC/C is highly conserved among eukaryotes, no APC/C inhibitors are known in plants. Recently, we have identified ULTRAVIOLET-B-INSENSITIVE4 (UVI4) as a plant-specific component of the APC/C. Here, we demonstrate that UVI4 uses conserved APC/C interaction motifs to counteract the activity of the CELL CYCLE SWITCH52 A1 (CCS52A1) activator subunit, inhibiting the turnover of the A-type cyclin CYCA2;3. UVI4 is expressed in an S phase-dependent fashion, likely through the action of E2F transcription factors. Correspondingly, uvi4 mutant plants failed to accumulate CYCA2;3 during the S phase and prematurely exited the cell cycle, triggering the onset of the endocycle. We conclude that UVI4 regulates the temporal inactivation of APC/C during DNA replication, allowing CYCA2;3 to accumulate above the level required for entering mitosis, and thereby regulates the meristem size and plant growth rate.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , División Celular , Ciclina A2/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Inmunoprecipitación de Cromatina , Ciclina A2/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/ultraestructura , Microscopía Electrónica de Rastreo , Mutagénesis Sitio-Dirigida , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Fase S , Relación Estructura-Actividad , Activación Transcripcional , Transformación Genética , Técnicas del Sistema de Dos Híbridos , Complejos de Ubiquitina-Proteína Ligasa/genética
4.
Plant Cell ; 21(11): 3641-54, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19948791

RESUMEN

Entry into mitosis is universally controlled by cyclin-dependent kinases (CDKs). A key regulatory event in metazoans and fission yeast is CDK activation by the removal of inhibitory phosphate groups in the ATP binding pocket catalyzed by Cdc25 phosphatases. In contrast with other multicellular organisms, we show here that in the flowering plant Arabidopsis thaliana, cell cycle control does not depend on sudden changes in the phosphorylation pattern of the PSTAIRE-containing Cdk1 homolog CDKA;1. Consistently, we found that neither mutants in a previously identified CDC25 candidate gene nor plants in which it is overexpressed display cell cycle defects. Inhibitory phosphorylation of CDKs is also the key event in metazoans to arrest cell cycle progression upon DNA damage. However, we show here that the DNA damage checkpoint in Arabidopsis can also operate independently of the phosphorylation of CDKA;1. These observations reveal a surprising degree of divergence in the circuitry of highly conserved core cell cycle regulators in multicellular organisms. Based on biomathematical simulations, we propose a plant-specific model of how progression through the cell cycle could be wired in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Quinasas Ciclina-Dependientes/genética , Daño del ADN/genética , Reparación del ADN/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sitios de Unión/genética , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Evolución Molecular , Genes cdc/fisiología , Matemática , Mitosis/genética , Fosforilación , Estructuras de las Plantas/genética , Estructuras de las Plantas/crecimiento & desarrollo , Estructuras de las Plantas/metabolismo , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismo
5.
Plants (Basel) ; 9(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085527

RESUMEN

The small crucifer Cardamine hirsuta bears complex leaves divided into leaflets. This is in contrast to its relative, the reference plant Arabidopsis thaliana, which has simple leaves. Comparative studies between these species provide attractive opportunities to study the diversification of form. Here, we report on the implementation of the CRISPR/Cas9 genome editing methodology in C. hirsuta and with it the generation of novel alleles in the RCO gene, which was previously shown to play a major role in the diversification of form between the two species. Thus, genome editing can now be deployed in C. hirsuta, thereby increasing its versatility as a model system to study gene function and evolution.

6.
Plant Physiol ; 147(4): 1735-49, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18583532

RESUMEN

Prenylated Rab acceptor 1 (PRA1) domain proteins are small transmembrane proteins that regulate vesicle trafficking as receptors of Rab GTPases and the vacuolar soluble N-ethylmaleimide-sensitive factor attachment receptor protein VAMP2. However, little is known about PRA1 family members in plants. Sequence analysis revealed that higher plants, compared with animals and primitive plants, possess an expanded family of PRA1 domain-containing proteins. The Arabidopsis (Arabidopsis thaliana) PRA1 (AtPRA1) proteins were found to homodimerize and heterodimerize in a manner corresponding to their phylogenetic distribution. Different AtPRA1 family members displayed distinct expression patterns, with a preference for vascular cells and expanding or developing tissues. AtPRA1 genes were significantly coexpressed with Rab GTPases and genes encoding vesicle transport proteins, suggesting an involvement in the vesicle trafficking process similar to that of their animal counterparts. Correspondingly, AtPRA1 proteins were localized in the endoplasmic reticulum, Golgi apparatus, and endosomes/prevacuolar compartments, hinting at a function in both secretory and endocytic intracellular trafficking pathways. Taken together, our data reveal a high functional diversity of AtPRA1 proteins, probably dealing with the various demands of the complex trafficking system.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Familia de Multigenes , Proteínas de Transporte Vesicular/metabolismo , Secuencias de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/análisis , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Dimerización , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Glucuronidasa/análisis , Aparato de Golgi/metabolismo , Filogenia , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/análisis , Análisis de Secuencia de Proteína , Vesículas Transportadoras/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/análisis , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA