Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biology (Basel) ; 12(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37998038

RESUMEN

Diabetes mellitus is a complex disease with a wide range of manifestations. Diabetes, notably type 2 diabetes mellitus (T2DM), is becoming more common in Saudi Arabia as a result of obesity and an aging population. T2DM is classified as a noncommunicable disease, and its incidence in the Saudi population continues to grow as a consequence of socioeconomic changes. Toll-like receptors (TLRs) are innate immune receptors that mediate the inflammatory response in diabetes mellitus. Previous studies have documented the relationship between different SNPs in the TLR9 gene in different forms of diabetes. As a result, the purpose of this study was to investigate the relationship between rs187084, rs352140, and rs5743836 SNPs in the TLR9 gene among T2DM patients in the Saudi population. This was a case-control study that included 100 T2DM cases and 100 control subjects. The three SNPs were identified in the study population (n = 200) using polymerase chain reaction (PCR), restriction enzymes for rs352140, and Sanger sequencing for rs187084 and rs5783836. Next, statistical analyses were performed using various software to determine the association between the SNPs and T2DM. rs187084 and rs5743836 were associated with an increased risk of T2DM development. rs187084 and rs5743836 allelic frequencies were associated with a 3.2 times increased risk of T2DM development (p < 0.05). DBP was associated with T2DM (p = 0.02). rs187084 was associated with TC and HDLc; rs352140 was associated with DBP, HbA1c, and HDLc; rs5743836 was associated with waist (p < 0.05). The CGT haplotype was strongly associated with T2DM (p < 0.003). Gene-gene interaction, graphical presentation, and dendrogram showed the strong association with T2DM patients (p < 0.05). This study concluded that rs187084 and rs5743836 were strongly associated with T2DM in Saudi Arabian patients. This study provides further evidence that SNPs in the TLR9 gene play a significant role in T2DM development in a Saudi community.

2.
Front Pharmacol ; 14: 1178190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027033

RESUMEN

Introduction: There is a steady increase in colorectal cancer (CRC) incidences worldwide; at diagnosis, about 20 percent of cases show metastases. The transforming growth factor-beta (TGF-ß) signaling pathway is one of the critical pathways that influence the expression of cadherins allowing the epithelial-to-mesenchymal transition (EMT), which is involved in the progression of the normal colorectal epithelium to adenoma and metastatic carcinoma. The current study aimed to investigate the impact of a novel coordination complex of platinum (salicylaldiminato) PT(II) complex with dimethyl propylene linkage (PT-complex) on TGF-ß and EMT markers involved in the invasion and migration of the human HT-29 and SW620 CRC cell lines. Methods: Functional study and wound healing assay showed PT-complex significantly reduced cell motility and the migration and invasion of CRC cell lines compared to the untreated control. Western blot performed in the presence and absence of TGF-ß demonstrated that PT-complex significantly regulated the TGF-ß-mediated altered expressions of EMT markers. Results and Discussion: PT-complex attenuated the migration and invasion by upregulating the protein expression of EMT-suppressing factor E-cadherin and suppressing EMT-inducing factors such as N-Cadherin and Vimentin. Moreover, PT-complex significantly suppressed the activation of SMAD3 in both CRC cell lines. Further, the microarray data analysis revealed differential expression of genes related to invasion and migration. In conclusion, besides displaying antiproliferative activity, the PT complex can decrease the metastasis of CRC cell lines by modulating TGF-ß-regulated EMT markers. These findings provide new insight into TGF-ß/SMAD signaling as the molecular mechanism involved in the antitumoral properties of novel PT-complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA