Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurooncol ; 165(1): 161-169, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37878192

RESUMEN

BACKGROUND: Neurocognitive deficits are common in pediatric brain tumor survivors. The use of single nucleotide polymorphism (SNP) analysis in DNA repair genes may identify children treated with radiation therapy for brain tumors at increased risk for treatment toxicity and adverse neurocognitive outcomes. MATERIALS: The Human 660W-Quad v1.0 DNA BeadChip analysis (Illumina) was used to evaluate 1048 SNPs from 59 DNA repair genes in 46 subjects. IQ testing was measured by the Wechsler Intelligence Scale for Children. Linear regression was used to identify the 10 SNPs with the strongest association with IQ scores while adjusting for radiation type. RESULTS: The low vs high IQ patient cohorts were well matched for time from first treatment to most recent IQ, first treatment age, sex, and treatments received. 5 SNPs on 3 different genes (CYP29, XRCC1, and BRCA1) and on 3 different chromosomes (10, 19, and 17) had the strongest association with most recent IQ score that was not modified by radiation type. Furthermore, 5 SNPs on 4 different genes (WRN, NR3C1, ERCC4, RAD51L1) on 4 different chromosomes (8, 5, 16, 14) had the strongest association with change in IQ independent of radiation type, first IQ, and years between IQ measures. CONCLUSIONS: SNPs offer the potential to predict adverse neurocognitive outcomes in pediatric brain tumor survivors. Our results require validation in a larger patient cohort. Improving the ability to identify children at risk of treatment related neurocognitive deficits could allow for better treatment stratification and early cognitive interventions.


Asunto(s)
Neoplasias Encefálicas , Niño , Humanos , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Pruebas de Inteligencia , Sobrevivientes , Irradiación Craneana/efectos adversos , Pruebas Neuropsicológicas , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
2.
J Neurooncol ; 148(3): 569-575, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32506370

RESUMEN

INTRODUCTION: Low-grade glioma (LGG) represent the most common pediatric central nervous system tumor. When total surgical resection is not feasible, chemotherapy is first-line therapy in children. Multiple pediatric LGG chemotherapy regimens have been investigated with variable 2-year event free survival (EFS) rates of 39-69%. To date, treatment of pediatric LGG with a carboplatin and vinblastine (C/VBL) chemotherapy regimen has only been evaluated in a phase 1 dose-finding study. METHODS: A retrospective review of pediatric patients with LGG who were treated with C/VBL at Children's Hospital of Colorado or Akron Children's Hospital from 2011 to 2017 was conducted. Data collected included patient demographics, tumor location, disease response, neurofibromatosis 1 (NF1) status, therapy duration and toxicities. Response to therapy was determined by objective findings on imaging and treating physicians' evaluation. RESULTS: Forty-six patients were identified for analysis, all of whom were chemotherapy-naive. Only five patients treated in this cohort had NF1. BRAF fusion was identified in 65% (22/34) of tested tumors. Best therapy response was partial response in nine patients and stable disease in twenty-five patients. Twelve patients had progressive disease. One-year, 3-year, and 5-year EFS probabilities for all patients were 69.6%, 39.4%, and 34.5%, respectively. Nine patients had admissions for febrile neutropenia and seven patients experienced one delay in chemotherapy due to neutropenia. Only two patients had to discontinue this chemotherapy regimen because of treatment-related toxicities [carboplatin allergy (n = 1) and vinblastine neuropathy (n = 1)]. CONCLUSION: C/VBL achieves similar EFS rates to other single-agent and combination cytotoxic chemotherapy regimens for pediatric LGG with manageable toxicities.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Adolescente , Neoplasias Encefálicas/patología , Carboplatino/administración & dosificación , Niño , Preescolar , Femenino , Estudios de Seguimiento , Glioma/patología , Humanos , Lactante , Recién Nacido , Masculino , Clasificación del Tumor , Estudios Retrospectivos , Tasa de Supervivencia , Vinblastina/administración & dosificación
3.
Pediatr Blood Cancer ; 65(5): e26960, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29350470

RESUMEN

BACKGROUND: A desperate need for novel therapies in pediatric ependymoma (EPN) exists, as chemotherapy remains ineffective and radiotherapy often fails. EPN have significant infiltration of immune cells, which correlates with outcome. Immune checkpoint inhibitors provide an avenue for new treatments. This study characterizes tumor-infiltrating immune cells in EPN and aims at predicting candidates for clinical trials using checkpoint inhibitors targeting PD-L1/PD-1 (programmed death ligand 1/programmed death 1). METHODS: The transcriptomic profiles of the primary study cohort of EPN and other pediatric brain tumors were interrogated to identify PD-L1 expression levels. Transcriptomic findings were validated using the western blotting, immunohistochemistry and flow cytometry. RESULTS: We evaluated PD-L1 mRNA expression across four intracranial subtypes of EPN in two independent cohorts and found supratentorial RELA fusion (ST-RELA) tumors to have significantly higher levels. There was a correlation between high gene expression and protein PD-L1 levels in ST-RELA tumors by both the western blot and immunohistochemisty. The investigation of EPN cell populations revealed PD-L1 was expressed on both tumor and myeloid cells in ST-RELA. Other subtypes had little PD-L1 in either tumor or myeloid cell compartments. Lastly, we measured PD-1 levels on tumor-infiltrating T cells and found ST-RELA tumors express PD-1 in both CD4 and CD8 T cells. A functional T-cell exhaustion assay found ST-RELA T cells to be exhausted and unable to secrete IFNγ on stimulation. CONCLUSIONS: These findings in ST-RELA suggest tumor evasion and immunsuppression due to PD-L1/PD-1-mediated T-cell exhaustion. Trials of checkpoint inhibitors in EPN should be enriched for ST-RELA tumors.


Asunto(s)
Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/metabolismo , Ependimoma/metabolismo , Neoplasias Supratentoriales/metabolismo , Factor de Transcripción ReIA/metabolismo , Adolescente , Adulto , Antígeno B7-H1/genética , Biomarcadores de Tumor/genética , Niño , Preescolar , Estudios de Cohortes , Ependimoma/genética , Ependimoma/patología , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Humanos , Lactante , Masculino , Terapia Molecular Dirigida , Pronóstico , Neoplasias Supratentoriales/genética , Neoplasias Supratentoriales/patología , Linfocitos T/metabolismo , Factor de Transcripción ReIA/genética , Adulto Joven
4.
Nature ; 488(7409): 106-10, 2012 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-22820256

RESUMEN

Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, ß-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic ß-catenin signalling in medulloblastoma.


Asunto(s)
Neoplasias Cerebelosas/genética , Exoma/genética , Genoma Humano/genética , Meduloblastoma/genética , Mutación/genética , Neoplasias Cerebelosas/clasificación , Niño , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas Hedgehog/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Meduloblastoma/clasificación , Modelos Moleculares , Proteínas de Neoplasias/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Receptores Patched , Receptor Patched-1 , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas/genética , Receptores de Superficie Celular/genética , Proteínas Represoras/genética , Transducción de Señal , Factores de Transcripción TCF/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
BMC Cancer ; 16: 647, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27538997

RESUMEN

BACKGROUND: Diffuse intrinsic pontine gliomas (DIPGs) are highly aggressive, fatal, childhood tumors that arise in the brainstem. DIPGs have no effective treatment, and their location and diffuse nature render them inoperable. Radiation therapy remains the only standard of care for this devastating disease. New therapeutic targets are needed to develop novel therapy for DIPG. METHODS: We examined the expression of PLK1 mRNA in DIPG tumor samples through microarray analysis and found it to be up regulated versus normal pons. Using the DIPG tumor cells, we inhibited PLK1 using a clinically relevant specific inhibitor BI 6727 and evaluated the effects on, proliferation, apoptosis, induction of DNA damage and radio sensitization of the DIPG tumor cells. RESULTS: Treatment of DIPG cell lines with BI 6727, a new generation, highly selective inhibitor of PLK1, resulted in decreased cell proliferation and a marked increase in cellular apoptosis. Cell cycle analysis showed a significant arrest in G2-M phase and a substantial increase in cell death. Treatment also resulted in an increased γH2AX expression, indicating induction of DNA damage. PLK1 inhibition resulted in radiosensitization of DIPG cells. CONCLUSION: These findings suggest that targeting PLK1 with small-molecule inhibitors, in combination with radiation therapy, will hold a novel strategy in the treatment of DIPG that warrants further investigation.


Asunto(s)
Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Glioma/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Pteridinas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ADN/métodos , Regulación hacia Arriba/efectos de los fármacos , Quinasa Tipo Polo 1
6.
J Immunol ; 191(9): 4880-8, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24078694

RESUMEN

Despite increasing evidence that antitumor immune control exists in the pediatric brain, these findings have yet to be exploited successfully in the clinic. A barrier to development of immunotherapeutic strategies in pediatric brain tumors is that the immunophenotype of these tumors' microenvironment has not been defined. To address this, the current study used multicolor FACS of disaggregated tumor to systematically characterize the frequency and phenotype of infiltrating immune cells in the most common pediatric brain tumor types. The initial study cohort consisted of 7 pilocytic astrocytoma (PA), 19 ependymoma (EPN), 5 glioblastoma (GBM), 6 medulloblastoma (MED), and 5 nontumor brain (NT) control samples obtained from epilepsy surgery. Immune cell types analyzed included both myeloid and T cell lineages and respective markers of activated or suppressed functional phenotypes. Immune parameters that distinguished each of the tumor types were identified. PA and EPN demonstrated significantly higher infiltrating myeloid and lymphoid cells compared with GBM, MED, or NT. Additionally, PA and EPN conveyed a comparatively activated/classically activated myeloid cell-skewed functional phenotype denoted in particular by HLA-DR and CD64 expression. In contrast, GBM and MED contained progressively fewer infiltrating leukocytes and more muted functional phenotypes similar to that of NT. These findings were recapitulated using whole tumor expression of corresponding immune marker genes in a large gene expression microarray cohort of pediatric brain tumors. The results of this cross-tumor comparative analysis demonstrate that different pediatric brain tumor types exhibit distinct immunophenotypes, implying that specific immunotherapeutic approaches may be most effective for each tumor type.


Asunto(s)
Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/inmunología , Inmunofenotipificación , Células Mieloides/inmunología , Linfocitos T/inmunología , Adolescente , Astrocitoma/inmunología , Encéfalo/inmunología , Neoplasias Encefálicas/genética , Niño , Estudios de Cohortes , Ependimoma/inmunología , Epilepsia/inmunología , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/inmunología , Antígenos HLA-DR/metabolismo , Humanos , Meduloblastoma/inmunología , Receptores de IgG/metabolismo , Microambiente Tumoral
7.
Acta Neuropathol ; 127(5): 731-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24240813

RESUMEN

Better understanding of ependymoma (EPN) biology at relapse is needed to improve therapy at this critical event. Convincing data exist defining transcriptionally distinct posterior fossa (PF) sub-groups A and B at diagnosis. The clinical and biological consequence of these sub-groups at recurrence has not yet been defined. Genome and transcriptome microarray profiles and clinical variables of matched primary and first recurrent PF EPN pairs were used to identify biologically distinct patterns of progression between EPN sub-groups at recurrence. Key findings were validated by histology and immune function assays. Transcriptomic profiles were partially conserved at recurrence. However, 4 of 14 paired samples changed sub-groups at recurrence, and significant sub-group-specific transcriptomic changes between primary and recurrent tumors were identified, which were predominantly immune-related. Further examination revealed that Group A primary tumors harbor an immune gene signature and cellular functionality consistent with an immunosuppressive phenotype associated with tissue remodeling and wound healing. Conversely, Group B tumors develop an adaptive, antigen-specific immune response signature and increased T-cell infiltration at recurrence. Clinical distinctions between sub-groups become more apparent after first recurrence. Group A tumors were more often sub-totally resected and had a significantly shorter time to subsequent progression and worse overall survival. Minimal tumor-specific genomic changes were observed for either PF Groups A or B at recurrence. Molecular sub-groups of PF EPN convey distinct immunobiologic signatures at diagnosis and recurrence, providing potential biologic rationale to their disparate clinical outcomes. Immunotherapeutic approaches may be warranted, particularly in Group A PF EPN.


Asunto(s)
Ependimoma/diagnóstico , Ependimoma/inmunología , Neoplasias Infratentoriales/diagnóstico , Neoplasias Infratentoriales/inmunología , Recurrencia Local de Neoplasia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Estudios de Cohortes , Citocinas/metabolismo , Ependimoma/genética , Ependimoma/cirugía , Femenino , Humanos , Inmunohistoquímica , Neoplasias Infratentoriales/genética , Neoplasias Infratentoriales/cirugía , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Pronóstico , Transcriptoma , Adulto Joven
8.
Acta Neuropathol ; 127(4): 593-603, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24196163

RESUMEN

Neural tumors often express neurotransmitter receptors as markers of their developmental lineage. Although these receptors have been well characterized in electrophysiological, developmental and pharmacological settings, their importance in the maintenance and progression of brain tumors and, importantly, the effect of their targeting in brain cancers remains obscure. Here, we demonstrate high levels of GABRA5, which encodes the α5-subunit of the GABAA receptor complex, in aggressive MYC-driven, "Group 3" medulloblastomas. We hypothesized that modulation of α5-GABAA receptors alters medulloblastoma cell survival and monitored biological and electrophysiological responses of GABRA5-expressing medulloblastoma cells upon pharmacological targeting of the GABAA receptor. While antagonists, inverse agonists and non-specific positive allosteric modulators had limited effects on medulloblastoma cells, a highly specific and potent α5-GABAA receptor agonist, QHii066, resulted in marked membrane depolarization and a significant decrease in cell survival. This effect was GABRA5 dependent and mediated through the induction of apoptosis as well as accumulation of cells in S and G2 phases of the cell cycle. Chemical genomic profiling of QHii066-treated medulloblastoma cells confirmed inhibition of MYC-related transcriptional activity and revealed an enrichment of HOXA5 target gene expression. siRNA-mediated knockdown of HOXA5 markedly blunted the response of medulloblastoma cells to QHii066. Furthermore, QHii066 sensitized GABRA5 positive medulloblastoma cells to radiation and chemotherapy consistent with the role of HOXA5 in directly regulating p53 expression and inducing apoptosis. Thus, our results provide novel insights into the synthetic lethal nature of α5-GABAA receptor activation in MYC-driven/Group 3 medulloblastomas and propose its targeting as a novel strategy for the management of this highly aggressive tumor.


Asunto(s)
Neoplasias Cerebelosas/metabolismo , Regulación Neoplásica de la Expresión Génica/fisiología , Meduloblastoma/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores Nicotínicos/metabolismo , Animales , Benzodiazepinas/farmacología , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cerebelosas/patología , Cisplatino/farmacología , Ensayo de Unidades Formadoras de Colonias , Agonistas del GABA/farmacología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Meduloblastoma/patología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Técnicas de Placa-Clamp , Receptores Nicotínicos/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Ácido gamma-Aminobutírico/farmacología
9.
Pediatr Blood Cancer ; 61(1): 120-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23956023

RESUMEN

BACKGROUND: Atypical teratoid rhabdoid tumors (AT-RT) are pediatric tumors of the central nervous system with limited treatment options and poor survival rate. We investigated whether enhancing chemotherapy toxicity by depleting intracellular glutathione (GSH; a key molecule in cisplatin resistance) with high dose acetaminophen (AAP), may improve therapeutic efficacy in AT-RT in vitro. PROCEDURE: BT16 (cisplatin-resistant) and BT12 (cisplatin-sensitive) AT-RT cell lines were treated with combinations of AAP, cisplatin, and the anti-oxidant N-acetylcysteine (NAC). Cell viability, GSH and peroxide concentrations, mitochondrial damage, and apoptosis were evaluated in vitro. RESULTS: AAP enhanced cisplatin cytotoxicity in cisplatin-resistant BT16 cells but not cisplatin-sensitive BT12 cells. Baseline GSH levels were elevated in BT16 cells compared to BT12 cells, and AAP decreased GSH to a greater magnitude in BT16 cells than BT12 cells. Unlike BT12 cells, BT16 cells did not have elevated peroxide levels upon treatment with cisplatin alone, but did have elevated levels when treated with AAP + cisplatin. Both cell lines had markedly increased mitochondrial injury when treated with AAP + cisplatin relative to either drug treatment alone. The enhanced toxic effects were partially reversed with concurrent administration of NAC. CONCLUSIONS: Our results suggest that AAP could be used as a chemo-enhancement agent to potentiate cisplatin chemotherapeutic efficacy particularly in cisplatin-resistant AT-RT tumors with high GSH levels in clinical settings.


Asunto(s)
Acetaminofén/administración & dosificación , Acetilcisteína/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/administración & dosificación , Tumor Rabdoide , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patología
10.
Clin Cancer Res ; 30(8): 1544-1554, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38334950

RESUMEN

PURPOSE: There are no effective treatment strategies for children with highest-risk posterior fossa group A ependymoma (PFA). Chromosome 1q gains (1q+) are present in approximately 25% of newly diagnosed PFA tumors, and this number doubles at recurrence. Seventy percent of children with chromosome 1q+ PFA will die because of the tumor, highlighting the urgent need to develop new therapeutic strategies for this population. EXPERIMENTAL DESIGN: In this study, we utilize 1q+ PFA in vitro and in vivo models to test the efficacy of combination radiation and chemotherapy in a preclinical setting. RESULTS: 5-fluorouracil (5FU) enhances radiotherapy in 1q+ PFA cell lines. Specifically, 5FU increases p53 activity mediated by the extra copy of UCK2 located on chromosome 1q in 1q+ PFA. Experimental downregulation of UCK2 resulted in decreased 5FU sensitivity in 1q+ PFA cells. In in vitro studies, a combination of 5FU, retinoid tretinoin (ATRA), and radiation provided the greatest reduction in cellular proliferation and greatest increase in markers of apoptosis in 1q+ PFA cell lines compared with other treatment arms. Similarly, in vivo experiments demonstrated significant enhancement of survival in mice treated with combination radiation and 5FU and ATRA. CONCLUSIONS: These results are the first to identify a chromosome 1q+ specific therapy approach in 1q+ PFA. Existing phase I studies have already established single-agent pediatric safety and dosages of 5FU and ATRA, allowing for expedited clinical application as phase II trials for children with high-risk PFA.


Asunto(s)
Ependimoma , Neoplasias Infratentoriales , Niño , Humanos , Animales , Ratones , Neoplasias Infratentoriales/genética , Neoplasias Infratentoriales/patología , Neoplasias Infratentoriales/terapia , Resultado del Tratamiento , Ependimoma/genética , Ependimoma/terapia , Fluorouracilo , Cromosomas/metabolismo
11.
Neuro Oncol ; 26(6): 1109-1123, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38334125

RESUMEN

BACKGROUND: Cellular senescence can have positive and negative effects on the body, including aiding in damage repair and facilitating tumor growth. Adamantinomatous craniopharyngioma (ACP), the most common pediatric sellar/suprasellar brain tumor, poses significant treatment challenges. Recent studies suggest that senescent cells in ACP tumors may contribute to tumor growth and invasion by releasing a senesecence-associated secretory phenotype. However, a detailed analysis of these characteristics has yet to be completed. METHODS: We analyzed primary tissue samples from ACP patients using single-cell, single-nuclei, and spatial RNA sequencing. We performed various analyses, including gene expression clustering, inferred senescence cells from gene expression, and conducted cytokine signaling inference. We utilized LASSO to select essential gene expression pathways associated with senescence. Finally, we validated our findings through immunostaining. RESULTS: We observed significant diversity in gene expression and tissue structure. Key factors such as NFKB, RELA, and SP1 are essential in regulating gene expression, while senescence markers are present throughout the tissue. SPP1 is the most significant cytokine signaling network among ACP cells, while the Wnt signaling pathway predominantly occurs between epithelial and glial cells. Our research has identified links between senescence-associated features and pathways, such as PI3K/Akt/mTOR, MYC, FZD, and Hedgehog, with increased P53 expression associated with senescence in these cells. CONCLUSIONS: A complex interplay between cellular senescence, cytokine signaling, and gene expression pathways underlies ACP development. Further research is crucial to understand how these elements interact to create novel therapeutic approaches for patients with ACP.


Asunto(s)
Senescencia Celular , Craneofaringioma , Aprendizaje Automático , Neoplasias Hipofisarias , Humanos , Craneofaringioma/metabolismo , Craneofaringioma/patología , Craneofaringioma/genética , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Fenotipo , Regulación Neoplásica de la Expresión Génica , Niño , Masculino , Femenino
12.
Res Sq ; 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37609195

RESUMEN

Purpose: Neurocognitive deficits are common in pediatric brain tumor survivors. The use of single nucleotide polymorphism (SNP) analysis in DNA repair genes may identify children treated with radiation therapy for brain tumors at increased risk for treatment toxicity and adverse neurocognitive outcomes. Methods: The Human 660W-Quad v1.0 DNA BeadChip analysis (Illumina) was used to evaluate 1048 SNPs from 59 DNA repair genes in 46 subjects. IQ testing was measured by the Wechsler Intelligence Scale for Children. Linear regression was used to identify the 10 SNPs with the strongest association with IQ scores while adjusting for radiation type. Results: The low vs high IQ patient cohorts were well matched for time from first treatment to most recent IQ, first treatment age, gender, and treatments received. 5 SNPs on 3 different genes (CYP29, XRCC1, and BRCA1) and on 3 different chromosomes (10, 19, and 17) had the strongest association with most recent IQ score that was not modified by radiation type. Furthermore, 5 SNPs on 4 different genes (WRN, NR3C1, ERCC4, RAD51L1) on 4 different chromosomes (8, 5, 16, 14) had the strongest association with change in IQ independent of radiation type, first IQ, and years between IQ measures. Conclusions: SNP polymorphisms offer potential to predict adverse neurocognitive outcomes in pediatric brain tumor survivors. Our results require validation in a larger patient cohort. Improving the ability to identify children at risk of treatment related neurocognitive deficits could allow for better treatment stratification and early cognitive interventions.

13.
Neuro Oncol ; 25(4): 786-798, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36215273

RESUMEN

BACKGROUND: The diverse cellular constituents of childhood brain tumor ependymoma, recently revealed by single cell RNA-sequencing, may underly therapeutic resistance. Here we use spatial transcriptomics to further advance our understanding of the tumor microenvironment, mapping cellular subpopulations to the tumor architecture of ependymoma posterior fossa subgroup A (PFA), the commonest and most deadly childhood ependymoma variant. METHODS: Spatial transcriptomics data from intact PFA sections was deconvoluted to resolve the histological arrangement of neoplastic and non-neoplastic cell types. Key findings were validated using immunohistochemistry, in vitro functional assays and outcome analysis in clinically-annotated PFA bulk transcriptomic data. RESULTS: PFA are comprised of epithelial and mesenchymal histological zones containing a diversity of cellular states, each zone including co-existing and spatially distinct undifferentiated progenitor-like cells; a quiescent mesenchymal zone population, and a second highly mitotic progenitor population that is restricted to hypercellular epithelial zones and that is more abundant in progressive tumors. We show that myeloid cell interaction is the leading cause of mesenchymal transition in PFA, occurring in zones spatially distinct from hypoxia-induced mesenchymal transition, and these distinct EMT-initiating processes were replicated using in vitro models of PFA. CONCLUSIONS: These insights demonstrate the utility of spatial transcriptomics to advance our understanding of ependymoma biology, revealing a clearer picture of the cellular constituents of PFA, their interactions and influence on tumor progression.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Neoplasias Infratentoriales , Humanos , Transcriptoma , Neoplasias Infratentoriales/patología , Ependimoma/terapia , Transición Epitelial-Mesenquimal , Microambiente Tumoral
14.
Acta Neuropathol Commun ; 11(1): 158, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770931

RESUMEN

Plexiform neurofibroma (PN) is a leading cause of morbidity in children with the genetic condition Neurofibromatosis Type 1 (NF1), often disfiguring or threatening vital structures. During formation of PN, a complex tumor microenvironment (TME) develops, with recruitment of neoplastic and non-neoplastic cell types being critical for growth and progression. Due to the cohesive cellularity of PN, single-cell RNA-sequencing is difficult and may result in a loss of detection of critical cellular subpopulations. To bypass this barrier, we performed single-nuclei RNA-sequencing (snRNA-seq) on 8 frozen PN samples, and integrated this with spatial transcriptomics (ST) in 4 PN samples and immunohistochemistry to provide morphological context to transcriptomic data. SnRNA-seq analysis definitively charted the heterogeneous cellular subpopulations in the PN TME, with the predominant fraction being fibroblast subtypes. PN showed a remarkable amount of inter-sample homogeneity regarding cellular subpopulation proportions despite being resected from a variety of anatomical locations. ST analysis identified distinct cellular subpopulations which were annotated using snRNA-seq data and correlated with histological features. Schwann cell/fibroblast interactions were identified by receptor/ligand interaction analysis demonstrating a high probability of Neurexin 1/Neuroligin 1 (NRXN1/NLGN1) receptor-ligand cross-talk predicted between fibroblasts and non-myelinated Schwann cells (NM-SC) and subtypes, respectively. We observed aberrant expression of NRXN1 and NLGN1 in our PN snRNA-seq data compared to a normal mouse sciatic nerve single-cell RNA-seq dataset. This pathway has never been described in PN and may indicate a clear and direct communication pathway between putative NM-SC cells of origin and surrounding fibroblasts, potentially driving disease progression. SnRNA-seq integrated with spatial transcriptomics advances our understanding of the complex cellular heterogeneity of PN TME and identify potential novel communication pathways that may drive disease progression, a finding that could provide translational therapy options for patients with these devastating tumors of childhood and early adulthood.


Asunto(s)
Neurofibroma Plexiforme , Neurofibromatosis 1 , Niño , Humanos , Ratones , Animales , Adulto , Neurofibromatosis 1/genética , Neurofibromatosis 1/patología , Neurofibroma Plexiforme/genética , Neurofibroma Plexiforme/metabolismo , Neurofibroma Plexiforme/patología , Transcriptoma , Ligandos , ARN Nuclear Pequeño , Progresión de la Enfermedad , ARN , Microambiente Tumoral
15.
Neuro Oncol ; 25(10): 1854-1867, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37246777

RESUMEN

BACKGROUND: Ependymoma (EPN) posterior fossa group A (PFA) has the highest rate of recurrence and the worst prognosis of all EPN molecular groups. At relapse, it is typically incurable even with re-resection and re-irradiation. The biology of recurrent PFA remains largely unknown; however, the increasing use of surgery at first recurrence has now provided access to clinical samples to facilitate a better understanding of this. METHODS: In this large longitudinal international multicenter study, we examined matched samples of primary and recurrent disease from PFA patients to investigate the biology of recurrence. RESULTS: DNA methylome derived copy number variants (CNVs) revealed large-scale chromosome gains and losses at recurrence in PFA. CNV changes were dominated by chromosome 1q gain and/or 6q loss, both previously identified as high-risk factors in PFA, which were present in 23% at presentation but increased to 61% at first recurrence. Multivariate survival analyses of this cohort showed that cases with 1q gain or 6q loss at first recurrence were significantly more likely to recur again. Predisposition to 1q+/6q- CNV changes at recurrence correlated with hypomethylation of heterochromatin-associated DNA at presentation. Cellular and molecular analyses revealed that 1q+/6q- PFA had significantly higher proportions of proliferative neuroepithelial undifferentiated progenitors and decreased differentiated neoplastic subpopulations. CONCLUSIONS: This study provides clinically and preclinically actionable insights into the biology of PFA recurrence. The hypomethylation predisposition signature in PFA is a potential risk-classifier for trial stratification. We show that the cellular heterogeneity of PFAs evolves largely because of genetic evolution of neoplastic cells.


Asunto(s)
Ependimoma , Neoplasias Infratentoriales , Humanos , Neoplasias Infratentoriales/genética , Aberraciones Cromosómicas , Análisis de Supervivencia , Ependimoma/genética , Cromosomas
16.
Acta Neuropathol ; 123(4): 539-52, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22402744

RESUMEN

Medulloblastomas are the most common malignant brain tumors in children. Several large-scale genomic studies have detailed their heterogeneity, defining multiple subtypes with unique molecular profiles and clinical behavior. Increased expression of the miR-183~96~182 cluster of microRNAs has been noted in several subgroups, including the most clinically aggressive subgroup associated with genetic amplification of MYC. To understand the contribution of miR-183~96~182 to the pathogenesis of this aggressive subtype of medulloblastoma, we analyzed global gene expression and proteomic changes that occur upon modulation of miRNAs in this cluster individually and as a group in MYC-amplified medulloblastoma cells. Knockdown of the full miR-183~96~182 cluster results in enrichment of genes associated with apoptosis and dysregulation of the PI3K/AKT/mTOR signaling axis. Conversely, there is a relative enrichment of pathways associated with migration, metastasis and epithelial to mesenchymal transition, as well as pathways associated with dysfunction of DNA repair in cells with preserved miR-183 cluster expression. Immunocytochemistry and FACS analysis confirm induction of apoptosis upon knockdown of the miR-183 cluster. Importantly, cell-based migration and invasion assays verify the positive regulation of cell motility/migration by the miR-183 cluster, which is largely mediated by miR-182. We show that the effects on cell migration induced by the miR-183 cluster are coupled to the PI3K/AKT/mTOR pathway through differential regulation of AKT1 and AKT2 isoforms. Furthermore, we show that rapamycin inhibits cell motility/migration in medulloblastoma cells and phenocopies miR-183 cluster knockdown. Thus, the miR-183 cluster regulates multiple biological programs that converge to support the maintenance and metastatic potential of medulloblastoma.


Asunto(s)
Apoptosis/genética , Movimiento Celular/genética , Proliferación Celular , MicroARNs/genética , Transducción de Señal/genética , Ciclo Celular/genética , Línea Celular Tumoral , Ensayos de Migración Celular , Neoplasias Cerebelosas/patología , Ensayo Cometa , Biología Computacional , Regulación Neoplásica de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Humanos , Meduloblastoma/patología , Proteómica , Proteínas Proto-Oncogénicas c-myc/genética , Transfección
17.
Neuro Oncol ; 24(2): 273-286, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34077540

RESUMEN

BACKGROUND: Medulloblastoma (MB) is a heterogeneous disease in which neoplastic cells and associated immune cells contribute to disease progression. We aimed to determine the influence of neoplastic and immune cell diversity on MB biology in patient samples and animal models. METHODS: To better characterize cellular heterogeneity in MB we used single-cell RNA sequencing, immunohistochemistry, and deconvolution of transcriptomic data to profile neoplastic and immune populations in patient samples and animal models across childhood MB subgroups. RESULTS: Neoplastic cells cluster primarily according to individual sample of origin which is influenced by chromosomal copy number variance. Harmony alignment reveals novel MB subgroup/subtype-associated subpopulations that recapitulate neurodevelopmental processes, including photoreceptor and glutamatergic neuron-like cells in molecular subgroups GP3 and GP4, and a specific nodule-associated neuronally differentiated subpopulation in the sonic hedgehog subgroup. We definitively chart the spectrum of MB immune cell infiltrates, which include subpopulations that recapitulate developmentally related neuron-pruning and antigen-presenting myeloid cells. MB cellular diversity matching human samples is mirrored in subgroup-specific mouse models of MB. CONCLUSIONS: These findings provide a clearer understanding of the diverse neoplastic and immune cell subpopulations that constitute the MB microenvironment.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Animales , Neoplasias Cerebelosas/genética , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Ratones , Transcriptoma , Microambiente Tumoral/genética
18.
Eur J Pharmacol ; 873: 172981, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32014486

RESUMEN

Dysregulated activity of the transcription factors of the nuclear factor κb (NF-κB) family has been implicated in numerous cancer types, inflammatory diseases, autoimmune disease, and other disorders. As such, selective NF-κB pathway inhibition is an attractive target to researchers for preclinical and clinical drug development. A plethora of commercially and clinically available inhibitors claim to be NF-κB specific; however, such claims of specificity are rarely quantitative or benchmarked, making the biomedical literature difficult to contextualize. This imprecision is worsened because some NF-κB reporter systems have low signal-to-noise ratios. Herein, we use a robust, defined, commercially available reporter system to benchmark NF-κB agonists and antagonists for the field. We also functionally characterize a RELA fusion-positive ependymoma cell culture with validated NF-κB inhibitor compounds.


Asunto(s)
FN-kappa B/agonistas , FN-kappa B/antagonistas & inhibidores , Benchmarking , Fusión Celular , Línea Celular Tumoral , Supervivencia Celular , Ependimoma/patología , Células HEK293 , Humanos , Técnicas In Vitro , Reproducibilidad de los Resultados , Relación Señal-Ruido
19.
Cell Rep ; 32(6): 108023, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783945

RESUMEN

Ependymoma (EPN) is a brain tumor commonly presenting in childhood that remains fatal in most children. Intra-tumoral cellular heterogeneity in bulk-tumor samples significantly confounds our understanding of EPN biology, impeding development of effective therapy. We, therefore, use single-cell RNA sequencing, histology, and deconvolution to catalog cellular heterogeneity of the major childhood EPN subgroups. Analysis of PFA subgroup EPN reveals evidence of an undifferentiated progenitor subpopulation that either differentiates into subpopulations with ependymal cell characteristics or transitions into a mesenchymal subpopulation. Histological analysis reveals that progenitor and mesenchymal subpopulations co-localize in peri-necrotic zones. In conflict with current classification paradigms, relative PFA subpopulation proportions are shown to determine bulk-tumor-assigned subgroups. We provide an interactive online resource that facilitates exploration of the EPN single-cell dataset. This atlas of EPN cellular heterogeneity increases understanding of EPN biology.


Asunto(s)
Ependimoma/genética , Células Neoplásicas Circulantes/metabolismo , Análisis de la Célula Individual/métodos , Niño , Humanos
20.
Neurooncol Adv ; 2(1): vdaa021, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32642682

RESUMEN

BACKGROUND: Hundreds of systemic chemotherapy trials in diffuse intrinsic pontine glioma (DIPG) have not improved survival, potentially due to lack of intratumoral penetration, which has not previously been assessed in humans. METHODS: We used gemcitabine as a model agent to assess DIPG intratumoral pharmacokinetics (PK) using mass spectrometry. RESULTS: In a phase 0 clinical trial of i.v. gemcitabine prior to biopsy in children newly diagnosed with DIPG by MRI, mean concentration in 4 biopsy cores in patient 1 (H3K27M diffuse midline glioma) was 7.65 µM. These compare favorably to levels for patient 2 (mean 3.85 µM, found to have an H3K27-wildtype low-grade glioma on histology), and from a similar study in adult glioblastoma (adjusted mean 3.48 µM). In orthotopic patient-derived xenograft (PDX) models of DIPG and H3K27M-wildtype pediatric glioblastoma, gemcitabine levels and clearance were similar in tumor, pons, and cortex and did not depend on H3K27 mutation status or tumor location. Normalized gemcitabine levels were similar in patient 1 and the DIPG PDX. CONCLUSIONS: These findings, while limited to one agent, provide preliminary evidence for the hypotheses that lack of intratumoral penetration is not why systemic chemotherapy has failed in DIPG, and orthotopic PDX models can adequately model intratumoral PK in human DIPG.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA