Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Bioorg Chem ; 131: 106340, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36586301

RESUMEN

7ß-Hydroxysteroid dehydrogenases (7ß-HSDHs) have attracted increasing attention due to their crucial roles in the biosynthesis of ursodeoxycholic acid (UDCA). However, most published 7ß-HSDHs are strictly NADPH-dependent oxidoreductases with poor activity and low productivity. Compared with NADPH, NADH is more stable and cheaper, making it the more popular cofactor for industrial applications of dehydrogenases. Herein, by using a sequence and structure-guided genome mining approach based on the structural information of conserved cofactor-binding motifs, we uncovered a novel NADH-dependent 7ß-HSDH (Cle7ß-HSDH). The Cle7ß-HSDH was overexpressed, purified, and characterized. It exhibited high specific activity (9.6 U/mg), good pH stability and thermostability, significant methanol tolerance, and showed excellent catalytic efficiencies (kcat/Km) towards 7-oxo-lithocholic acid (7-oxo-LCA) and NADH (70.8 mM-1s-1 and 31.8 mM-1s-1, respectively). Molecular docking and mutational analyses revealed that Asp42 could play a considerable role in NADH binding and recognition. Coupling with a glucose dehydrogenase for NADH regeneration, up to 20 mM 7-oxo-LCA could be completely transformed to UDCA within 90 min by Cle7ß-HSDH. This study provides an efficient approach for mining promising enzymes from genomic databases for cost-effective biotechnological applications.


Asunto(s)
Hidroxiesteroide Deshidrogenasas , NAD , Ácido Ursodesoxicólico , Hidroxiesteroide Deshidrogenasas/química , Hidroxiesteroide Deshidrogenasas/metabolismo , Simulación del Acoplamiento Molecular , NAD/química , NADP/química , Ácido Ursodesoxicólico/biosíntesis
2.
Bioorg Chem ; 136: 106533, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37084587

RESUMEN

Penicillin G acylase (PGA) is a key biocatalyst for the enzymatic production of ß-lactam antibiotics, which can not only catalyze the synthesis of ß-lactam antibiotics but also catalyze the hydrolysis of the products to prepare semi-synthetic antibiotic intermediates. However, the high hydrolysis and low synthesis activities of natural PGAs severely hinder their industrial application. In this study, a combinatorial directed evolution strategy was employed to obtain new PGAs with outstanding performances. The best mutant ßF24G/ßW154G was obtained from the PGA of Achromobacter sp., which exhibited approximately a 129.62-fold and a 52.55-fold increase in specific activity and synthesis/hydrolysis ratio, respectively, compared to the wild-type AsPGA. Thereafter, this mutant was used to synthesize amoxicillin, cefadroxil, and ampicillin; all conversions > 99% were accomplished in 90-135 min with almost no secondary hydrolysis byproducts produced in the reaction. Molecular dynamics simulation and substrate pocket calculation revealed that substitution of the smallest glycine residue at ßF24 and ßW154 expanded the binding pocket, thereby facilitating the entry and release of substrates and products. Therefore, this novel mutant is a promising catalyst for the large-scale production of ß-lactam antibiotics.


Asunto(s)
Achromobacter , Penicilina Amidasa , Penicilina Amidasa/metabolismo , Achromobacter/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Ampicilina/metabolismo , Amoxicilina/metabolismo , Monobactamas
3.
Crit Rev Biotechnol ; 42(2): 271-293, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34151645

RESUMEN

A readily distinguishable and indigenous member of the plant kingdom in the Indian subcontinent is the 'drumstick tree', i.e. Moringa oleifera Lam. In addition to India, this drought-tolerant and rapidly evolving tree is currently extensively disseminated across the globe, including subtropical and tropical areas. The plant boasts a high nutritional, nutraceutical and therapeutic profile, mainly attributing to its significant repertoire of the biologically active components in different parts: protein, flavonoids, saponins, phenolic acids, tannin, isothiocyanate, lipids, minerals, vitamins, amongst others. M. oleifera seeds have been shown to elicit a myriad of pharmacological potential and health benefits, including: antimicrobial, anticancer, antidiabetic, antioxidant, antihypertensive, anti-inflammatory and cardioprotective properties. Additionally, the seed cakes obtained from post-extraction process are utilized for: coagulation, flocculation and sedimentation purposes, benefiting effluent management and the purification of water, mainly because of their capability in eliminating microbes and organic matter. Despite the extraordinary focus on other parts of the plant, especially the foliage, the beneficial aspects of the seeds have not been sufficiently highlighted. The health benefits of bioactive components in the seeds are promising and demonstrate enough potential to facilitate the development of functional foods. In this review, we present a critical account of the types, characteristics, production and isolation of bioactive components from M. oleifera seeds. Furthermore, we appraise the: pharmacological activities, cosmetic, biodiesel, lubricative, modern farming, nutritive and wastewater treatment applications of these functional ingredients. We infer that there is a need for further human/clinical studies and evaluation, despite their health benefits. Additionally, the safety issues need to be adequately clarified and assessed, in order to establish a conventional therapeutic profile.


Asunto(s)
Moringa oleifera , Extractos Vegetales , Semillas/química , Antioxidantes/farmacología , Suplementos Dietéticos , Flavonoides , Moringa oleifera/química , Extractos Vegetales/farmacología
4.
Protein Expr Purif ; 200: 106156, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35987323

RESUMEN

Glycoprotein (GP1,2) of the Ebola virus (EBOV) is the key membrane fusion protein, which is a key candidate protein for vaccine preparations. Previously, GP1,2 was expressed by Bombyx mori nucleopolyhedrovirus (BmNPV) expression vector system; however, few GP1,2 was incorporated into budded virus (BV) of BmNPV. To improve the incorporation efficiency of GP1,2 into the virion, the GP1,2 fusion with the cytoplasmic tail of GP64 of BmNPV was expressed in BmN cells by the BmNPV expression system. The BV was purified by ultracentrifugation, and GP1,2 expression in BV was detected by the antibody. The result indicated that a 532% increase in the relative GP1,2 densitometry signal was observed in constructs utilizing the GP64 C-terminal domain; moreover, the substitution of GP1,2 native signal peptide with GP64 signal peptide increased the incorporation efficiency by 34.6% in the relative GP1,2 densitometry signal. We revealed that the application of the cytoplasmic tail of BmNPV GP64 significantly increased the incorporation rate of GP1,2 into the BV envelope. This study lays a foundation for GP1,2 vaccine development.


Asunto(s)
Bombyx , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Línea Celular , Ebolavirus/genética , Glicoproteínas/genética , Nucleopoliedrovirus , Señales de Clasificación de Proteína
5.
Arch Virol ; 167(4): 1051-1059, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35201427

RESUMEN

Membrane fusion is a key step in enveloped virus infection, releasing the viral genome into the cytoplasm to initiate infection. Bombyx mori nucleopolyhedrovirus (BmNPV) is an enveloped DNA virus that mainly infects silkworms. Information about membrane fusion of BmNPV with host cells is still limited. In this study, BmN cells were pretreated with ??ammonium chloride??, and infection with BmNPV was allowed to occur naturally through endocytosis or artificially through low-pH-induced fusion with the plasma membrane, after which the cells were subjected to RNA-seq. The results indicated that a few endoplasmic reticulum-associated proteins (ERAPs) were among the common upregulated DEGs, including BiP, CRT, and HSP90, and this upregulation was confirmed by q-PCR. Knockdown of BiP, CRT, and HSP90 expression by siRNA resulted in significant inhibition of BmNPV infection. This study suggests that ERAPs may be involved in the BmNPV membrane fusion process during infection.


Asunto(s)
Bombyx , Nucleopoliedrovirus , Animales , Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Nucleopoliedrovirus/genética , RNA-Seq
6.
Environ Res ; 205: 112467, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863983

RESUMEN

Water pollution is a global issue that has drastically increased in recent years due to rapid industrial development. Different technologies have been designed for the removal of pollutants from wastewater. However, most of these techniques are expensive, generate new waste, and focus solely on metal removal instead of metal recovery. In this study, novel facultative exoelectrogenic strains designated Castellaniella sp. A5, Castellaniella sp. B3, and Castellaniella sp. A3 were isolated from a microbial fuel cell (MFC). These isolates were utilized as pure and mixed culture inoculums in a bioelectrochemical system (BES) to produce bioelectricity and treat simulated industrial wastewater. A single-chamber MFC inoculated with the mixed culture attained the highest electricity generation (i.e., 320 mW/m2 power density and 3.19 A/m2 current density), chemical oxygen demand removal efficiency (91.15 ± 0.05%), and coulombic efficiency (54.81 ± 4.18%). In addition, the BES containing biofilms of the mixed culture achieved the highest Cu, Cr, and Cd removal efficiencies of 99.89 ± 0.07%, 99.59 ± 0.53%, and 99.91 ± 0.04%, respectively. The Cr6+ and Cu2+ in the simulated industrial wastewater were recovered via microbial electrochemical reduction as Cr3+ and Cu0, respectively. However, Cd2+ precipitated as Cd (OH)2 or CdCO3 on the surface of the cathodes. These results suggest that a mixed culture inoculum of Castellaniella sp. A5, Castellaniella sp. B3, and Castellaniella sp. A3 has great potential as a biocatalyst in BES for heavy metals recovery from industrial wastewater.


Asunto(s)
Fuentes de Energía Bioeléctrica , Metales Pesados , Electricidad , Electrodos , Aguas Residuales
7.
Bioprocess Biosyst Eng ; 45(5): 877-890, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35166901

RESUMEN

Low electricity generation efficiency is one of the key issues that must be addressed for the practical application of microbial fuel cells (MFCs). Modification of microbial electrode materials is an effective method to enhance electron transfer. In this study, magnetite (Fe3O4) nanoparticles synthesized by co-precipitation were added to anode chambers in different doses to explore its effect on the performance of MFCs. The maximum power density of the MFCs doped with 4.5 g/L Fe3O4 (391.11 ± 9.4 mW/m2) was significantly increased compared to that of the undoped MFCs (255.15 ± 24.8 mW/m2). The COD removal efficiency of the MFCs increased from 85.8 ± 2.8% to 95.0 ± 2.1%. Electrochemical impedance spectroscopy and cyclic voltammetry tests revealed that the addition of Fe3O4 nanoparticles enhanced the biocatalytic activity of the anode. High-throughput sequencing results indicated that 4.5 g/L Fe3O4 modified anodes enriched the exoelectrogen Geobacter (31.5%), while control MFCs had less Geobacter (17.4%). Magnetite is widely distributed worldwide, which provides an inexpensive means to improve the electrochemical performance of MFCs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nanopartículas , Electricidad , Electrodos , Óxido Ferrosoférrico
8.
J Environ Manage ; 303: 114144, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34839958

RESUMEN

The purpose of this study was to find an economical and effective amendment for improving composting performance and product quality, as well as to analyze the microbial community succession in the whole phase of composting. Therefore, the effect of reusable amendment bamboo sphere on composting performance and microbial community succession during food waste composting was investigated. The results showed that 6% bamboo sphere treatment had the highest degree of polymerization (3.7) and humification index (0.18). Compared with control, 6% bamboo sphere amendment increased total nitrogen (TN), phosphorus (TP) and potassium (TK) contents by 13.61%, 19% and 17.42%, respectively. Furthermore, bamboo sphere enhanced bacterial-fungal diversity and improved microbial community composition by enhancing the relative abundance of thermo-tolerance and lignocellulolytic bacteria and fungi. The five most abundant genera in bamboo sphere composting comprised Bacillus (0-71.47%), Chloroplast-norank (0-47.17%), Pusillimonas (0-33.24%), Acinetobacter (0-27.98%) and unclassified Sphingobacteriaceae (0-22.62%). Linear discriminant analysis effect size showed that Firmicutes, Thermoascaceae and Actinobacteriota, which have a relationship with the decomposition of soluble organic matter and lignocellulose, were significantly enriched in bamboo sphere treatment. Canonical correspondence analysis illustrated that total organic carbon (TOC), TK, and TP were the most important environmental factors on microbial community succession in the two composting systems. Together these results suggest that bamboo sphere as a reusable amendment can shorten maturity period, improve humification degree, increase the contents of nutrient and contribute to the succession of microbial community during food waste composting. These findings provide a theoretical basis for improving the efficiency of food waste composting.


Asunto(s)
Compostaje , Microbiota , Eliminación de Residuos , Alimentos , Estiércol , Suelo
9.
J Environ Manage ; 319: 115765, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35982566

RESUMEN

The aim of this study was to explore the dynamic of microbial community and metabolic function in food waste composting amended with traditional Chinese medicine residues (TCMRs). Results suggested that TCMRs addition at up to 10% leads to a higher peak temperature (60.5 °C), germination index (GI) value (119.26%), and a greater reduction in total organic carbon (TOC) content (8.08%). 10% TCMRs significantly induced the fluctuation of bacterial community composition, as well as the fungal community in the thermophilic phase. The addition of 10% TCMRs enhanced the abundance of bacterial genera such as Acetobacter, Bacillus, and Brevundimonas, as well as fungal genera such as Chaetomium, Thermascus, and Coprinopsis, which accelerated lignocellulose degradation and humification degree. Conversely, the growth of Lactobacillus and Pseudomonas was inhibited by 10% TCMRs to weaken the acidic environment and reduce nitrogen loss. Metabolic function analysis revealed that 10% TCMRs promoted the metabolism of carbohydrate and amino acid, especially citrate cycle, glycolysis/gluconeogenesis, and cysteine and methionine metabolism. Redundancy analysis showed that the carbon to nitrogen (C/N) ratio was the most significant environmental factor influencing the dynamic of bacterial and fungal communities.


Asunto(s)
Compostaje , Microbiota , Eliminación de Residuos , Bacterias/metabolismo , Carbono/metabolismo , Alimentos , Estiércol , Medicina Tradicional China , Nitrógeno/metabolismo , Suelo
10.
Angew Chem Int Ed Engl ; 61(46): e202212720, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36151587

RESUMEN

Due to its stringent stereospecificity, D-amino acid oxidase (DAAO) has made it very easy to synthesize L-amino acids. However, the low activity of the wild-type enzyme toward unnatural substrates, such as D-glufosinate (D-PPT), restricts its application. In this study, DAAO from Rhodotorula gracilis (RgDAAO) was directly evolved using a hydrophilicity-substitution saturation mutagenesis strategy, yielding a mutant with significantly increased catalytic activity against D-PPT. The mutant displays distinct catalytic properties toward hydrophilic substrates as compared to numerous WT-DAAOs. The analysis of homology modeling and molecular dynamic simulation suggest that the extended reaction pocket with greater hydrophilicity was the reason for the enhanced activity. The current study established an enzymatic synthetic route to L-PPT, an excellent herbicide, with high efficiency, and the proposed strategy provides a new viewpoint on enzyme engineering for the biosynthesis of unnatural amino acids.


Asunto(s)
Aminoácidos , Aminobutiratos , Cinética , Interacciones Hidrofóbicas e Hidrofílicas , Aminoácidos/metabolismo , Especificidad por Sustrato
11.
Sci Total Environ ; 933: 173153, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735332

RESUMEN

Toxic element pollution of soils emanating from smelting operations is an escalating global concern due to its severe impact on ecosystems and human health. In this study, soil samples were collected and analyzed to quantify the risk contributions and delineate the spatial risk footprints from smelting emissions for 8 toxic elements. A comprehensive health risk contribution and delineation framework was utilized, consisting of Positive matrix factorization (PMF), spatial interpolation, an advanced Bayesian isotope mixing model via Mixing Stable Isotope Analysis in R (MixSIAR), and distance-based regression. The results showed that the mean concentrations of As, Cd, Cu, Hg, Pb, and Zn exceeded the background levels, indicating substantial contamination. Three sources were identified using the PMF model and confirmed by spatial interpolation and MixSIAR, with contributions ranked as follows: industrial wastewater discharge and slag runoff from the smelter site (48.9 %) > natural geogenic inputs from soil parent materials (26.7 %) > atmospheric deposition of dust particles from smelting operations (24.5 %). Among the identified sources, smelter runoff posed the most significant risk, accounting for 97.9 % of the non-carcinogenic risk (NCR) and 59.9 % of the carcinogenic risk (CR). Runoff also drove NCR and CR exceedances at 7.8 % and 4.7 % of sites near the smelter, respectively. However, atmospheric deposition from smelting emissions affected soils across a larger 0.8 km radius. Although it posed lower risks, contributing just 1.1 % to NCR and 22.6 % to CR due to the limited elevation of toxic elements, deposition reached more distant soils. Spatial interpolation and distance-based regression delineated high NCR and CR exposure hotspots within 1.4 km for runoff and 0.8 km for deposition, with exponentially diminishing risks at further distances. These findings highlight the need for pathway-specific interventions that prioritize localized wastewater containment and drainage controls near the smelter while implementing broader regional air pollution mitigation measures.


Asunto(s)
Teorema de Bayes , Monitoreo del Ambiente , Metalurgia , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Suelo/química , Medición de Riesgo , Metales Pesados/análisis
12.
J Hazard Mater ; 469: 134007, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38490150

RESUMEN

Electrogenic biofilms in bioelectrochemical systems (BES) are critical in wastewater treatment. Industrial effluents often contain cobalt (Co2+); however, its impact on biofilms is unknown. This study investigated how increasing Co2+ concentrations (0-30 mg/L) affect BES biofilm community dynamics, extracellular polymeric substances, microbial metabolism, electron transfer gene expression, and electrochemical performance. The research revealed that as Co2+ concentrations increased, power generation progressively declined, from 345.43 ± 4.07 mW/m2 at 0 mg/L to 160.51 ± 0.86 mW/m2 at 30 mg/L Co2+. However, 5 mg/L Co2+ had less effect. The Co2+ removal efficiency in the reactors fed with 5 and 10 mg/L concentrations exceeded 99% and 94%, respectively. However, at 20 and 30 mg/L, the removal efficiency decreased substantially, likely because of reduced biofilm viability. FTIR indicated the participation of biofilm functional groups in Co2+ uptake. XPS revealed Co2+ presence in biofilms as CoO and Co(OH)2, indicating precipitation also aided removal. Cyclic voltammetry and electrochemical impedance spectroscopy tests revealed that 5 mg/L Co2+ had little impact on the electrocatalytic activity, while higher concentrations impaired it. Furthermore, at a concentration of 5 mg/L Co2+, there was an increase in the proportion of the genus Anaeromusa-Anaeroarcus, while the genus Geobacter declined at all tested Co2+ concentrations. Additionally, higher concentrations of Co2+ suppressed the expression of extracellular electron transfer genes but increased the expression of Co2+-resistance genes. Overall, this study establishes how Co2+ impacts electrogenic biofilm composition, function, and treatment efficacy, laying the groundwork for the optimized application of BES in remediating Co2+-contaminated wastewater.


Asunto(s)
Ácidos Alcanesulfónicos , Fuentes de Energía Bioeléctrica , Purificación del Agua , Cobalto , Electrones , Biopelículas , Electrodos , Iones
13.
Bioresour Technol ; 407: 131096, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986881

RESUMEN

In this study, a microbial fuel cell was constructed using Raoultella sp. XY-1 to efficiently degrade tetracycline (TC) and assess the effectiveness of the electrochemical system. The degradation rate reached 83.2 ± 1.8 % during the 7-day period, in which the system contained 30 mg/L TC, and the degradation pathway and intermediates were identified. Low concentrations of TC enhanced anodic biofilm power production, while high concentrations of TC decreased the electrochemical activity of the biofilm, extracellular polymeric substances, and enzymatic activities associated with electron transfer. Introducing electrogenic bacteria improved power generation efficiency. A three-strain hybrid system was fabricated using Castellaniella sp. A3, Castellaniella sp. A5 and Raoultella sp. XY-1, leading to the enhanced TC degradation rate of 90.4 % and the increased maximum output voltage from 200 to 265 mV. This study presents a strategy utilizing tetracycline-degrading bacteria as bioanodes for TC removal, while incorporating electrogenic bacteria to enhance electricity generation.


Asunto(s)
Antibacterianos , Fuentes de Energía Bioeléctrica , Tetraciclina , Aguas Residuales , Purificación del Agua , Tetraciclina/metabolismo , Tetraciclina/farmacología , Fuentes de Energía Bioeléctrica/microbiología , Antibacterianos/farmacología , Aguas Residuales/química , Aguas Residuales/microbiología , Purificación del Agua/métodos , Biopelículas , Biodegradación Ambiental , Electrodos , Técnicas Electroquímicas/métodos , Bacterias/metabolismo , Contaminantes Químicos del Agua/metabolismo , Electricidad
14.
J Hazard Mater ; 445: 130462, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36444812

RESUMEN

The conversion of the more toxic Sb(III) into less toxic Sb(V) is an effective strategy for the treatment of antimony-contaminated sites. In this study, a strain, Phytobacter sp. X4, which can tolerate high concentrations of antimony and can use nitrate as an electron acceptor for Sb(III) oxidation under anaerobic conditions, was isolated from the deep soil of an antimony mine flotation tailing. Unlike other antimony oxidizing bacteria, X4 oxidized better under high Sb(III) concentration, and the oxidation efficiency of 10 mM Sb(III) reached the maximum at 110 h with 61.8 %. Kinetic study showed X4 yielded a Vmax of 1.093 µM∙min-1 and a Km of 718.2 µM. The genome of Phytobacter sp. X4 consists of a complete circular chromosome and two plasmids. In addition, X4 had more metal(loid)s resistance genes and highly expressed genes than other Phytobacter spp., reflecting its stronger adaptive advantage in harsh survival environments. We also analyzed the origin and evolution of arsB, arsC, and arsH, which may have been transferred horizontally from other species. iscR and arsH may have an important contribution to Sb(III) oxidation. Thus, Phytobacter sp. X4 has a good ability to remediate high antimony-contaminated sites and can be applied to an anaerobic environment.


Asunto(s)
Antimonio , Contaminantes del Suelo , Oxidación-Reducción , Contaminación Ambiental , Suelo , Enterobacteriaceae , Contaminantes del Suelo/análisis , Secuenciación Completa del Genoma
15.
Water Res ; 231: 119655, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36706471

RESUMEN

Although Castellaniella species are crucial for denitrification, there is no report on their capacity to carry out denitrification and anode respiration simultaneously in a bioelectrochemical system (BES). Herein, the ability of a mixed inoculum of electricigenic Castellaniella species to perform simultaneous denitrification and anode respiration coupled with cathodic metals recovery was investigated in a BES. Results showed that 500 mg/L NO3--N significantly decreased power generation, whereas 100 and 250 mg/L NO3--N had a lesser impact. The single-chamber MFCs (SCMFCs) fed with 100 and 250 mg/L NO3--N concentrations achieved a removal efficiency higher than 90% in all cycles. In contrast, the removal efficiency in the SCMFCs declined dramatically at 500 mg/L NO3--N, which might be attributable to decreased microbial viability as revealed by SEM and CLSM. EPS protein content and enzymatic activities of the biofilms decreased significantly at this concentration. Cyclic voltammetry results revealed that the 500 mg/L NO3--N concentration decreased the redox activities of anodic biofilms, while electrochemical impedance spectroscopy showed that the internal resistance of the SCMFCs at this concentration increased significantly. In addition, BES inoculated with the Castellaniella species was able to simultaneously perform heterotrophic anodic denitrification and cathodic metals recovery from real wastewater. The BES attained Cu2+, Hg2+, Pb2+, and Zn2+ removal efficiencies of 99.86 ± 0.10%, 99.98 ± 0.014%, 99.98 ± 0.01%, and 99.17 ± 0.30%, respectively, from the real wastewater. Cu2+ was bio-electrochemically reduced to Cu0 and Cu2O, whereas Hg0 and HgO constituted the Hg species recovered via bioelectrochemical reduction and chemical deposition, respectively. Furthermore, Pb2+ and Zn2+ were bio-electrochemically reduced to Pb0 and Zn0, respectively. Over 89% of NO3--N was removed from the BES anolyte during the recovery of the metals. This research reveals promising denitrifying exoelectrogens for enhanced power generation, NO3--N removal, and heavy metals recovery in BES.


Asunto(s)
Fuentes de Energía Bioeléctrica , Mercurio , Aguas Residuales , Desnitrificación , Plomo , Electrodos , Nitrógeno
16.
Environ Sci Pollut Res Int ; 29(33): 50070-50084, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35226270

RESUMEN

This study investigated soil microbial community in a typical gathering area of antimony mining and smelting in South China. The physical and chemical properties of different soils (mining waste dumps, flotation tailings, and smelting slag) and depths (0-20 cm, 40-60 cm, and 80-100 cm) were compared. The results showed that antimony (Sb) and arsenic (As) were the main pollutants, and their concentrations were 5524.7 mg/kg and 3433.7 mg/kg, respectively. Xanthates were found in the flotation tailings and smelting slag, and the highest concentration was 585.1 mg/kg. The microbial communities were analyzed by high-throughput sequencing, and it was shown that Proteobacteria, Acidobacteria, Chlorobacterium, Bacteroides, and Actinomycetes were the dominant taxa at the phylum level. There were obvious differences in microbial community structure in different sites. The dominant microorganism in the mining site was Chujaibacter. Subgroup_2_unclassified and Gemmatimonadaceae_unclassified were the prevalent microorganisms in the flotation and smelting sites, respectively. As, Sb, and xanthates were the main factors affecting the diversity and composition of bacteria in the flotation tailings and smelting slag areas. Therefore, this study provides experimental guidance and a theoretical basis for soil antimony pollution quality assessment, biological treatment, and environmental remediation.


Asunto(s)
Arsénico , Microbiota , Contaminantes del Suelo , Antimonio/análisis , Arsénico/análisis , Bacterias , China , Minería , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
17.
Chemosphere ; 307(Pt 3): 135859, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35987270

RESUMEN

The aim of this study was to isolate thermotolerant alkali lignin-degrading bacteria and to investigate their degradation characteristics and application in food waste composting. Two thermotolerant alkali lignin-degrading bacteria isolates were identified as Bacillus sp. LD2 (LD2) and a novel species Aneurinibacillus sp. LD3 (LD3). Compared with strain LD2, LD3 had a higher alkali lignin degradation rate (61.28%) and ligninolytic enzyme activities, and the maximum lignin peroxidase, laccase, and manganese peroxidase activities were 3117.25, 1484.5, and 1770.75 U L-1, respectively. GC-MS analysis revealed that low-molecular-weight compounds such as 4'-hydroxy-3'-methoxy acetophenone, vanillic acid, 1-(4-hydroxy-3,5-dimethoxyphenyl), benzoic acid, and octadecanoic acid were formed in the degradation of alkali lignin by LD3, indicating the cleavage of ß-aryl ether, Cα-Cß bonds, and aromatic rings in lignin. Composting results showed that inoculating LD3 improved the degradation of organic matter by 20.11% and reduced the carbon-to-nitrogen (C/N) ratio (15.66). Additionally, a higher decrease in the content of lignocellulose was observed in the LD treatment. FTIR and 3D-EEM spectra analysis indicated that inoculating LD3 promoted the decomposition of easily available organic substances and lignocellulose and the formation of aromatic structures and humic acid-like substances. In brief, the thermotolerant lignin-degrading bacterium Aneurinibacillus sp. LD3 is effective in degrading lignin and improving the quality of composting.


Asunto(s)
Compostaje , Eliminación de Residuos , Acetofenonas , Álcalis , Bacterias/metabolismo , Ácido Benzoico , Carbono/metabolismo , Éteres , Alimentos , Sustancias Húmicas , Lacasa/metabolismo , Lignina/metabolismo , Nitrógeno/metabolismo , Ácido Vanílico
18.
Bioresour Technol ; 363: 127923, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36096323

RESUMEN

The objective of this work was to evaluate the fungal community assembly and function during food waste composting with Aneurinibacillus sp. LD3 (LD3) inoculant. Inoculation reduced the content of total organic carbon, moisture content, nitrate nitrogen, and nitrite nitrogen. The LD3 inoculant was able to drive the changes in the assembly of the fungal community. In particular, inoculation with LD3 not only increased the relative abundance of Ascomycota and Trichocomaceae_unclassified for lignocellulose degradation at the mesophilic and cooling stages but also reduced the relative abundances of the opportunistic human pathogen Candida. Saprotroph was the predominant fungal trophic mode in composting, and inoculation with LD3 has a better inactivation effect on animal and plant pathogenic fungi during composting. Furthermore, the variation of the fungal community after inoculation with LD3 was the largest explained by temperature (30.64%). These results implied that LD3 significantly regulated fungal composition and function of food waste composting.


Asunto(s)
Compostaje , Micobioma , Eliminación de Residuos , Animales , Carbono , Alimentos , Humanos , Nitratos , Nitritos , Nitrógeno , Suelo
19.
Bioresour Technol ; 359: 127487, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35724906

RESUMEN

This work explored the microbial mechanisms for the improvement of composting efficiency driven by thermotolerant lignin-degrading bacterium Aneurinibacillus sp. LD3 (LD3). Results showed that LD3 inoculant prolonged the thermophilic period by 4 days, improved the final content of humic acid, total phosphorus (TP), nitrogen, potassium and seed germination index. Inoculating LD3 enhanced the relative abundance of thermotolerant and phosphate-solubilizing microbes including the phyla of Proteobacteria, Bacteroidota, Firmicutes, and Actinobacteriota, and the genus of Bacillus, Thermoactinomyces, and Pseudomonas. Metabolic function analysis showed that sequences involved in carbohydrate and amino acid metabolism were boosted, while sequences associated with human disease were reduced after inoculating LD3. Spearman correlation analysis revealed that Aneurinibacillus has a significant positive correlation with temperature, TP, Bacillus, and Thermoactinomyces. This study provides useful information for understanding the microbial mechanisms of LD3 promoting composting efficiency, and reveals the tremendous potential of LD3 in the resource utilization of organic solid wastes.


Asunto(s)
Bacillus , Compostaje , Bacterias , Humanos , Sustancias Húmicas , Estiércol , Nitrógeno , Fósforo , Suelo
20.
Chemosphere ; 289: 133185, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34883128

RESUMEN

A high bioflocculant-producing bacterial strain was identified and named Bacillus subtilis ZHX3. Single-factor experiments suggested that 10 g/L starch and 5 g/L yeast extract were optimal for strain ZHX3 to produce bioflocculant MBF-ZHX3. The maximum flocculating rate reached 95.5%, and 3.14 g/L product was extracted after 3 days of cultivation. MBF-ZHX3 was mainly composed of polysaccharides (77.2%) and protein (14.8%). The polysaccharides contained 28.9% uronic acid and 3.7% amino sugar. Rhamnose, arabinose, galactose, glucose, mannose, and galacturonic acid in a molar ratio of 0.35:1.83:3.09:12.66:0.46:3.81 were detected. MBF-ZHX3 had a molecular weight of 10,028 Da and contained abundant groups (-OH, CO, >PO, C-O-C) contributing to flocculation. Adsorption and bridging was considered as the main flocculation mechanism. MBF-ZHX3 was more effective in decolorizing dyes, removing heavy metals and flotation reagents compared to polyacrylamide. The results implied that MBF-ZHX3 has the potential to substitute polyacrylamide in wastewater treatment because of its excellent biological and environmental benefits.


Asunto(s)
Bacillus subtilis , Contaminantes Ambientales , Floculación , Concentración de Iones de Hidrógeno , Polisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA