Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Am Chem Soc ; 146(10): 6493-6505, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426440

RESUMEN

PylB is a radical S-adenosyl-l-methionine (SAM) enzyme predicted to convert l-lysine into (3R)-3-methyl-d-ornithine, a precursor in the biosynthesis of the 22nd proteogenic amino acid pyrrolysine. This protein highly resembles that of the radical SAM tyrosine and tryptophan lyases, which activate their substrate by abstracting a H atom from the amino-nitrogen position. Here, combining in vitro assays, analytical methods, electron paramagnetic resonance spectroscopy, and theoretical methods, we demonstrated that instead, PylB activates its substrate by abstracting a H atom from the Cγ position of l-lysine to afford the radical-based ß-scission. Strikingly, we also showed that PylB catalyzes the reverse reaction, converting (3R)-3-methyl-d-ornithine into l-lysine and using catalytic amounts of the 5'-deoxyadenosyl radical. Finally, we identified significant in vitro production of 5'-thioadenosine, an unexpected shunt product that we propose to result from the quenching of the 5'-deoxyadenosyl radical species by the nearby [Fe4S4] cluster.


Asunto(s)
Metionina , Ornitina/análogos & derivados , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Lisina , Racemetionina , Espectroscopía de Resonancia por Spin del Electrón
2.
J Am Chem Soc ; 142(11): 5104-5116, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32078310

RESUMEN

The [Fe2S2]-RsrR gene transcription regulator senses the redox status in bacteria by modulating DNA binding, while its cluster cycles between +1 and +2 states-only the latter binds DNA. We have previously shown that RsrR can undergo remarkable conformational changes involving a 100° rotation of tryptophan 9 between exposed (Out) and buried (In) states. Here, we have used the chemical modification of Trp9, site-directed mutagenesis, and crystallographic and computational chemical studies to show that (i) the Out and In states correspond to oxidized and reduced RsrR, respectively, (ii) His33 is protonated in the In state due to a change in its pKa caused by cluster reduction, and (iii) Trp9 rotation is conditioned by the response of its dipole moment to environmental electrostatic changes. Our findings illustrate a novel function of protonation resulting from electron transfer.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Electrones , Proteínas Hierro-Azufre/química , Protones , Factores de Transcripción/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Histidina/química , Histidina/genética , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Simulación de Dinámica Molecular , Mutación , Oxidación-Reducción , Unión Proteica , Conformación Proteica , Streptomyces/enzimología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
J Am Chem Soc ; 141(6): 2367-2375, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30657661

RESUMEN

The recently discovered Rrf2 family transcriptional regulator RsrR coordinates a [2Fe-2S] cluster. Remarkably, binding of the protein to RsrR-regulated promoter DNA sequences is switched on and off through the facile cycling of the [2Fe-2S] cluster between +2 and +1 states. Here, we report high resolution crystal structures of the RsrR dimer, revealing that the [2Fe-2S] cluster is asymmetrically coordinated across the RsrR monomer-monomer interface by two Cys residues from one subunit and His and Glu residues from the other. To our knowledge, this is the first example of a protein bound [Fe-S] cluster with three different amino acid side chains as ligands, and of Glu acting as ligand to a [2Fe-2S] cluster. Analyses of RsrR structures revealed a conformational change, centered on Trp9, which results in a significant shift in the DNA-binding helix-turn-helix region.


Asunto(s)
Proteínas Bacterianas/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN/metabolismo , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Factores de Transcripción/metabolismo
4.
J Am Chem Soc ; 140(48): 16661-16668, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30418774

RESUMEN

The radical S-adenosyl-l-methionine tryptophan lyase uses radical-based chemistry to convert l-tryptophan into 3-methyl-2-indolic acid, a fragment in the biosynthesis of the thiopeptide antibiotic nosiheptide. This complex reaction involves several successive steps corresponding to (i) the activation by a specific hydrogen-atom abstraction, (ii) an unprecedented •CO2- radical migration, (iii) a cyanide fragment release, and (iv) the termination of the radical-based reaction. In vitro study of this reaction is made more difficult because the enzyme produces a significant amount of a shunt product instead of the natural product. Here, using a combination of X-ray crystallography, electron paramagnetic resonance spectroscopy, and quantum and hybrid quantum mechanical/molecular mechanical calculations, we have deciphered the fine mechanism of the key •CO2- radical migration, highlighting how the preorganized active site of the protein tightly controls this reaction.


Asunto(s)
Proteínas Bacterianas/metabolismo , Liasas de Carbono-Carbono/metabolismo , Triptófano/metabolismo , Proteínas Bacterianas/química , Liasas de Carbono-Carbono/química , Dominio Catalítico , Cristalografía por Rayos X , Descarboxilación , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres/química , Modelos Moleculares , Unión Proteica , Teoría Cuántica , Streptomyces/enzimología , Triptófano/química
5.
J Am Chem Soc ; 140(4): 1365-1371, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29300094

RESUMEN

Regiospecific dehydration of vicinal diols by enzymes is a difficult reaction that usually requires activation by dedicated organic cofactors. The enzymatic use of radical-based chemistry is an effective but challenging alternative as radical intermediates are difficult to control. Here we report the X-ray structure of the radical S-adenosyl-l-methionine (SAM) dehydratase AprD4 involved in the biosynthesis of the aminoglycoside (AG) antibiotic apramycin. Using in vitro characterizations and theoretical calculations based on our crystal structure, we have been able to propose a detailed mechanism of AprD4 catalysis, which involves a complex partially substrate-induced proton relay network in the enzyme active site and highlights the key role of the protein matrix in driving high-energy intermediates.


Asunto(s)
Alcoholes/metabolismo , Hidroliasas/metabolismo , Protones , S-Adenosilmetionina/metabolismo , Alcoholes/química , Biocatálisis , Cristalografía por Rayos X , Deshidratación , Radicales Libres/química , Radicales Libres/metabolismo , Hidroliasas/química , Modelos Moleculares , Teoría Cuántica , S-Adenosilmetionina/química , Streptomyces/enzimología , Especificidad por Sustrato
6.
J Am Chem Soc ; 138(36): 11802-9, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27545412

RESUMEN

The enzyme NadA catalyzes the synthesis of quinolinic acid (QA), the precursor of the universal nicotinamide adenine dinucleotide (NAD) cofactor. Here, we report the crystal structures of complexes between the Thermotoga maritima (Tm) NadA K219R/Y107F variant and (i) the first intermediate (W) resulting from the condensation of dihydroxyacetone phosphate (DHAP) with iminoaspartate and (ii) the DHAP analogue and triose-phosphate isomerase inhibitor phosphoglycolohydroxamate (PGH). In addition, using the TmNadA K219R/Y21F variant, we have reacted substrates and obtained a crystalline complex between this protein and the QA product. We also show that citrate can bind to both TmNadA K219R and its Y21F variant. The W structure indicates that condensation causes dephosphorylation. We propose that catalysis by the K219R/Y107F variant is arrested at the W intermediate because the mutated protein is unable to catalyze its aldo-keto isomerization and/or cyclization that ultimately lead to QA formation. Intriguingly, PGH binds to NadA with its phosphate group at the site where the carboxylate groups of W also bind. Our results shed significant light on the mechanism of the reaction catalyzed by NadA.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Ácido Quinolínico/metabolismo , Transferasas Alquil y Aril/genética , Cristalografía por Rayos X , Dihidroxiacetona Fosfato/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Conformación Proteica , Thermotoga maritima/enzimología
7.
Chembiochem ; 16(3): 397-402, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25504963

RESUMEN

The structure of the radical S-adenosyl-L-methionine (SAM) [FeFe]-hydrogenase maturase HydG involved in CN(-) /CO synthesis is characterized by two internal tunnels connecting its tyrosine-binding pocket with the external medium and the C-terminal Fe4 S4 cluster-containing region. A comparison with a tryptophan-bound NosL structure suggests that substrate binding causes the closing of the first tunnel and, along with mutagenesis studies, that tyrosine binds to HydG with its amino group well positioned for H-abstraction by SAM. In this orientation the dehydroglycine (DHG) fragment caused by tyrosine Cα-Cß bond scission can readily migrate through the second tunnel towards the C-terminal domain where both CN(-) and CO are synthesized. Our HydG structure appears to be in a relaxed state with its C-terminal cluster CysX2 CysX22 Cys motif exposed to solvent. A rotation of this domain coupled to Fe4 S4 cluster assembly would bury its putatively reactive unique Fe ion thereby allowing it to interact with DHG.


Asunto(s)
Proteínas Bacterianas/química , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Thermoanaerobacterium/enzimología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Conformación Proteica , S-Adenosilmetionina/química , Tirosina/química
8.
Nature ; 460(7257): 814-22, 2009 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-19675641

RESUMEN

Reactions involving H(2), N(2), CO, CO(2) and CH(4) are likely to have been central to the origin of life. This is indicated by the active-site structures of the enzymes involved, which are often reminiscent of minerals. Through the combined efforts of protein crystallography, various types of spectroscopy, theoretical calculations and model chemistry, it has been possible to put forward plausible mechanisms for gas-based metabolism by extant microorganisms. Although the reactions are based on metal centres, the protein matrix regulates reactivity and substrate and product trafficking through internal pathways, specific ligation and dielectricity.


Asunto(s)
Enzimas/química , Enzimas/metabolismo , Gases/metabolismo , Metaloproteínas/química , Metaloproteínas/metabolismo , Anaerobiosis , Biocatálisis , Dominio Catalítico , Relación Estructura-Actividad
9.
Proc Natl Acad Sci U S A ; 109(14): 5305-10, 2012 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-22431599

RESUMEN

The crystal structure of the membrane-bound O(2)-tolerant [NiFe]-hydrogenase 1 from Escherichia coli (EcHyd-1) has been solved in three different states: as-isolated, H(2)-reduced, and chemically oxidized. As very recently reported for similar enzymes from Ralstonia eutropha and Hydrogenovibrio marinus, two supernumerary Cys residues coordinate the proximal [FeS] cluster in EcHyd-1, which lacks one of the inorganic sulfide ligands. We find that the as-isolated, aerobically purified species contains a mixture of at least two conformations for one of the cluster iron ions and Glu76. In one of them, Glu76 and the iron occupy positions that are similar to those found in O(2)-sensitive [NiFe]-hydrogenases. In the other conformation, this iron binds, besides three sulfur ligands, the amide N from Cys20 and one Oε of Glu76. Our calculations show that oxidation of this unique iron generates the high-potential form of the proximal cluster. The structural rearrangement caused by oxidation is confirmed by our H(2)-reduced and oxidized EcHyd-1 structures. Thus, thanks to the peculiar coordination of the unique iron, the proximal cluster can contribute two successive electrons to secure complete reduction of O(2) to H(2)O at the active site. The two observed conformations of Glu76 are consistent with this residue playing the role of a base to deprotonate the amide moiety of Cys20 upon iron binding and transfer the resulting proton away, thus allowing the second oxidation to be electroneutral. The comparison of our structures also shows the existence of a dynamic chain of water molecules, resulting from O(2) reduction, located near the active site.


Asunto(s)
Cristalografía por Rayos X/métodos , Escherichia coli/enzimología , Hidrogenasas/metabolismo , Oxígeno/metabolismo , Sitios de Unión , Hidrogenasas/química , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica
10.
J Am Chem Soc ; 136(14): 5253-6, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24650327

RESUMEN

Quinolinate synthase (NadA) is a Fe4S4 cluster-containing dehydrating enzyme involved in the synthesis of quinolinic acid (QA), the universal precursor of the essential nicotinamide adenine dinucleotide (NAD) coenzyme. A previously determined apo NadA crystal structure revealed the binding of one substrate analog, providing partial mechanistic information. Here, we report on the holo X-ray structure of NadA. The presence of the Fe4S4 cluster generates an internal tunnel and a cavity in which we have docked the last precursor to be dehydrated to form QA. We find that the only suitably placed residue to initiate this process is the conserved Tyr21. Furthermore, Tyr21 is close to a conserved Thr-His-Glu triad reminiscent of those found in proteases and other hydrolases. Our mutagenesis data show that all of these residues are essential for activity and strongly suggest that Tyr21 deprotonation, to form the reactive nucleophilic phenoxide anion, is mediated by the triad. NadA displays a dehydration mechanism significantly different from the one found in archetypical dehydratases such as aconitase, which use a serine residue deprotonated by an oxyanion hole. The X-ray structure of NadA will help us unveil its catalytic mechanism, the last step in the understanding of NAD biosynthesis.


Asunto(s)
Hidrolasas/química , Complejos Multienzimáticos/química , Tirosina/química , Cristalografía por Rayos X , Deshidratación , Hidrolasas/metabolismo , Modelos Moleculares , Estructura Molecular , Complejos Multienzimáticos/metabolismo , Tirosina/metabolismo
11.
Angew Chem Int Ed Engl ; 53(44): 11840-4, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25196319

RESUMEN

Streptomyces actuosus tryptophan lyase (NosL) is a radical SAM enzyme which catalyzes the synthesis of 3-methyl-2-indolic acid, a precursor in the synthesis of the promising antibiotic nosiheptide. The reaction involves cleavage of the tryptophan Cα-Cß bond and recombination of the amino-acid-derived -COOH fragment at the indole ring. Reported herein is the 1.8 Šresolution crystal structure of NosL complexed with its substrate. Unexpectedly, only one of the tryptophan amino hydrogen atoms is optimally placed for H abstraction by the SAM-derived 5'-deoxyadenosyl radical. This orientation, in turn, rules out the previously proposed delocalized indole radical as the species which undergoes Cα-Cß bond cleavage. Instead, stereochemical considerations indicate that the reactive intermediate is a (·)NH tryptophanyl radical. A structure-based amino acid sequence comparison of NosL with the tyrosine lyases ThiH and HydG strongly suggests that an equivalent (·)NH radical operates in the latter enzymes.


Asunto(s)
Triptófano/química , Modelos Químicos
12.
Nat Chem ; 16(11): 1882-1893, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39294420

RESUMEN

Two of nature's recurring binding motifs in metalloproteins are the CxxxCxxC motif in radical SAM enzymes and the 2-His-1-carboxylate motif found both in zincins and α-ketoglutarate and non-haem iron enzymes. Here we show the confluence of these two domains in a single post-translational modifying enzyme containing an N-terminal radical S-adenosylmethionine domain fused to a C-terminal 2-His-1-carboxylate (HExxH) domain. The radical SAM domain catalyses three-residue cyclophane formation and is the signature modification of triceptides, a class of ribosomally synthesized and post-translationally modified peptides. The HExxH domain is a defining feature of zinc metalloproteases. Yet the HExxH motif-containing domain studied here catalyses ß-hydroxylation and is an α-ketoglutarate non-haem iron enzyme. We determined the crystal structure for this HExxH protein at 2.8 Å, unveiling a distinct structural fold, thus expanding the family of α-ketoglutarate non-haem iron enzymes with a class that we propose to name αKG-HExxH. αKG-HExxH proteins represent a unique family of ribosomally synthesized and post-translationally modified peptide modifying enzymes that can furnish opportunities for genome mining, synthetic biology and enzymology.


Asunto(s)
S-Adenosilmetionina , Hidroxilación , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , Modelos Moleculares , Dominios Proteicos , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Pliegue de Proteína , Cristalografía por Rayos X , Biocatálisis , Ciclofanos
13.
Cell Chem Biol ; 30(8): 943-952.e7, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37451267

RESUMEN

Darobactins represent a class of ribosomally synthesized and post-translationally modified peptide (RiPP) antibiotics featuring a rare bicyclic structure. They target the Bam-complex of Gram-negative bacteria and exhibit in vivo activity against drug-resistant pathogens. First isolated from Photorhabdus species, the corresponding biosynthetic gene clusters (BGCs) are widespread among γ-proteobacteria, including the genera Vibrio, Yersinia, and Pseudoalteromonas (P.). While the organization of the BGC core is highly conserved, a small subset of Pseudoalteromonas carries an extended BGC with additional genes. Here, we report the identification of brominated and dehydrated darobactin derivatives from P. luteoviolacea strains. The marine derivatives are active against multidrug-resistant (MDR) Gram-negative bacteria and showed solubility and plasma protein binding ability different from darobactin A, rendering it more active than darobactin A. The halogenation reaction is catalyzed by DarH, a new class of flavin-dependent halogenases with a novel fold.


Asunto(s)
Fenilpropionatos , Fenilpropionatos/metabolismo , Bacterias Gramnegativas/genética , Metaboloma
14.
J Biol Inorg Chem ; 17(5): 817-29, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22526565

RESUMEN

Understanding the interaction of a protein with a relevant ligand is crucial for the design of an artificial metalloenzyme. Our own interest is focused on the synthesis of artificial monooxygenases. In an initial effort, we have used the periplasmic nickel-binding protein NikA from Escherichia coli and iron complexes in which N(2)Py(2) ligands (where Py is pyridine) have been varied in terms of charge, aromaticity, and size. Six "NikA/iron complex" hybrids have been characterized by X-ray crystallography, and their interactions and solution properties have been studied. The hybrids are stable as indicated by their K (d) values, which are all in the micromolar range. The X-ray structures show that the ligands interact with NikA through salt bridges with arginine residues and π-stacking with a tryptophan residue. We have further characterized these interactions using quantum mechanical calculations and determined that weak CH/π hydrogen bonds finely modulate the stability differences between hybrids. We emphasize the important role of the tryptophan residues. Thus, our study aims at the complete characterization of the factors that condition the interaction of an artificial ligand and a protein and their implications for catalysis. Besides its potential usefulness in the synthesis of artificial monooxygenases, our approach should be generally applicable in the field of artificial metalloenzymes.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Compuestos de Hierro/química , Metaloproteínas/química , Níquel/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Compuestos de Hierro/metabolismo , Ligandos , Metaloproteínas/metabolismo , Modelos Moleculares , Piridinas/química , Piridinas/metabolismo , Agua/química
15.
Proc Natl Acad Sci U S A ; 106(35): 14867-71, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19706452

RESUMEN

Radical S-adenosine-L-methionine (SAM or AdoMet) proteins are involved in chemically difficult reactions including the synthesis of cofactors, the generation of protein radicals, and the maturation of complex organometallic catalytic sites. In the first and common step of the reaction, a conserved [Fe4S4] cluster donates an electron to perform the reductive cleavage of AdoMet into methionine and a reactive radical 5'-dA. species. The latter extracts a hydrogen atom from substrate eliciting one of the about 40 reactions so far characterized for this family of proteins. It has been suggested that the radical-generating mechanism differs depending on whether AdoMet is a cofactor or a substrate. It has also been speculated that electron transfer from the [Fe4S4] cluster to AdoMet is sulfur-based. Here we have used protein crystallography and theoretical calculations to show that regardless whether AdoMet serves as a cofactor or a substrate, the 5'-dA. generating mechanism should be common to the radical SAM proteins studied so far, and that electron transfer is mediated by a unique Fe from the conserved [Fe4S4] cluster. This unusual electron transfer is determined by the sulfonium ion in AdoMet.


Asunto(s)
Hidrogenasas/química , Hidrogenasas/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Thermotoga maritima/enzimología , Cristalografía por Rayos X , Transporte de Electrón , Radicales Libres/metabolismo , Modelos Moleculares , Estructura Molecular , Unión Proteica
16.
Angew Chem Int Ed Engl ; 51(31): 7711-4, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22715136

RESUMEN

Stop for NadA! A [4Fe-4S] enzyme, NadA, catalyzes the formation of quinolinic acid in de novo nicotinamide adenine dinucleotide (NAD) biosynthesis. A structural analogue of an intermediate, 4,5-dithiohydroxyphthalic acid (DTHPA), has an in vivo NAD biosynthesis inhibiting activity in E. coli. The inhibitory effect can be explained by the coordination of DTHPA thiolate groups to a unique Fe site of the NadA [4Fe-4S] cluster.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Dihidroxiacetona Fosfato/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas Hierro-Azufre/antagonistas & inhibidores , Transferasas Alquil y Aril/metabolismo , Sitios de Unión/efectos de los fármacos , Dihidroxiacetona Fosfato/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/metabolismo , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
17.
ACS Bio Med Chem Au ; 2(1): 36-52, 2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-37102176

RESUMEN

This Review focuses on the structure-function relationship of radical S-adenosyl-l-methionine (SAM) enzymes involved in the assembly of metallocofactors corresponding to the active sites of [FeFe]-hydrogenase and nitrogenase [MoFe]-protein. It does not claim to correspond to an extensive review on the assembly machineries of these enzyme active sites, for which many good reviews are already available, but instead deals with the contribution of structural data to the understanding of their chemical mechanism (Buren et al. Chem. Rev.2020, 142 ( (25), ) 11006-11012; Britt et al. Chem. Sci.2020, 11 ( (38), ), 10313-10323). Hence, we will present the history and current knowledge about the radical SAM maturases HydE, HydG, and NifB as well as what, in our opinion, should be done in the near future to overcome the existing barriers in our understanding of this fascinating chemistry that intertwine organic radicals and organometallic complexes.

18.
Nat Commun ; 13(1): 2284, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477710

RESUMEN

2-iminoacetate synthase ThiH is a radical S-adenosyl-L-methionine (SAM) L-tyrosine lyase and catalyzes the L-tyrosine Cα-Cß bond break to produce dehydroglycine and p-cresol while the radical SAM L-tryptophan lyase NosL cleaves the L-tryptophan Cα-C bond to produce 3-methylindole-2-carboxylic acid. It has been difficult to understand the features that condition one C-C bond break over the other one because the two enzymes display significant primary structure similarities and presumably similar substrate-binding modes. Here, we report the crystal structure of L-tyrosine bound ThiH from Thermosinus carboxydivorans revealing an unusual protonation state of L-tyrosine upon binding. Structural comparison of ThiH with NosL and computational studies of the respective reactions they catalyze show that substrate activation is eased by tunneling effect and that subtle structural changes between the two enzymes affect, in particular, the hydrogen-atom abstraction by the 5´-deoxyadenosyl radical species, driving the difference in reaction specificity.


Asunto(s)
Liasas , S-Adenosilmetionina , Catálisis , S-Adenosilmetionina/metabolismo , Triptófano/metabolismo , Tirosina
19.
Inorg Chem ; 50(5): 1868-78, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21247090

RESUMEN

Ni-containing carbon monoxide dehydrogenases (CODH), present in many anaerobic microorganisms, catalyze the reversible oxidation of CO to CO(2) at the so-called C-cluster. This atypical active site is composed of a [NiFe(3)S(4)] cluster and a single unusual iron ion called ferrous component II or Fe(u) that is bridged to the cluster via one sulfide ion. After additional refinement of recently published high-resolution structures of COOH(x)-, OH(x)-, and CN-bound CODH from Carboxydothermus hydrogenoformans (Jeoung and Dobbek Science 2007, 318, 1461-1464; J. Am. Chem. Soc. 2009, 131, 9922-9923), we have used computational methods on the predominant resulting structures to investigate the spectroscopically well-characterized catalytic intermediates, C(red1) and the two-electron more-reduced C(red2). Several models were geometry-optimized for both states using hybrid quantum mechanical/molecular mechanical potentials. The comparison of calculated Mössbauer parameters of these active site models with experimental data allows us to propose that the C(red1) state has a Fe(u)-Ni(2+) bridging hydroxide ligand and the C(red2) state has a hydride terminally bound to Ni(2+). Using our combined structural and theoretical data, we put forward a revised version of an earlier proposal for the catalytic cycle of Ni-containing CODH (Volbeda and Fontecilla-Camps Dalton Trans. 2005, 21, 3443-3450) that agrees with available spectroscopic and structural data. This mechanism involves an abnormal CO(2) insertion into the Ni(2+)-H(-) bond.


Asunto(s)
Aldehído Oxidorreductasas/química , Dióxido de Carbono/química , Hidrógeno/química , Complejos Multienzimáticos/química , Níquel/química , Catálisis , Dominio Catalítico , Espectroscopía de Mossbauer
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA