Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 96(8): 3362-3372, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38348659

RESUMEN

Recently, we described synthetic sulfolipids named Sulfavants as a novel class of molecular adjuvants based on the sulfoquinovosyl-diacylglycerol skeleton. The members of this family, Sulfavant A (1), Sulfavant R (2), and Sulfavant S (3), showed important effects on triggering receptor expressed on myeloid cells 2 (TREM2)-induced differentiation and maturation of human dendritic cells (hDC), through a novel cell mechanism underlying the regulation of the immune response. As these molecules are involved in biological TREM2-mediated processes crucial for cell survival, here, we report the synthesis and application of a fluorescent analogue of Sulfavant A bearing the 4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene moiety (Me4-BODIPY). The fluorescent derivative, named PB-SULF A (4), preserving the biological activity of Sulfavants, opens the way to chemical biology and cell biology experiments to better understand the interactions with cellular and in vivo organ targets and to improve our comprehension of complex molecular mechanisms underlying the not fully understood ligand-induced TREM2 activity.


Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes , Humanos , Colorantes Fluorescentes/química , Compuestos de Boro/farmacología , Compuestos de Boro/química , Adyuvantes Inmunológicos/farmacología , Glicoproteínas de Membrana , Receptores Inmunológicos
2.
J Transl Med ; 22(1): 114, 2024 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287296

RESUMEN

BACKGROUND: Several evidence demonstrated that glucagon-like peptide 1 receptor agonists (GLP1-RAs) reduce the risk of dementia in type 2 diabetes patients by improving memory, learning, and overcoming cognitive impairment. In this study, we elucidated the molecular processes underlying the protective effect of Tirzepatide (TIR), a dual glucose-dependent insulinotropic polypeptide receptor agonist (GIP-RA)/ GLP-1RA, against learning and memory disorders. METHODS: We investigated the effects of TIR on markers of neuronal growth (CREB and BDNF), apoptosis (BAX/Bcl2 ratio) differentiation (pAkt, MAP2, GAP43, and AGBL4), and insulin resistance (GLUT1, GLUT4, GLUT3 and SORBS1) in a neuroblastoma cell line (SHSY5Y) exposed to normal and high glucose concentration. The potential role on DNA methylation of genes involved in neuroprotection and epigenetic modulators of neuronal growth (miRNA 34a), apoptosis (miRNA 212), and differentiation (miRNA 29c) was also investigated. The cell proliferation was detected by measuring Ki-67 through flow cytometry. The data were analysed by SPSS IBM Version 23 or GraphPad Prism 7.0 software and expressed as the means ± SEM. Differences between the mean values were considered significant at a p-value of < 0.05. GraphPad Prism software was used for drawing figures. RESULTS: For the first time, it was highlighted: (a) the role of TIR in the activation of the pAkt/CREB/BDNF pathway and the downstream signaling cascade; (b) TIR efficacy in neuroprotection; (c) TIR counteracting of hyperglycemia and insulin resistance-related effects at the neuronal level. CONCLUSIONS: We demonstrated that TIR can ameliorate high glucose-induced neurodegeneration and overcome neuronal insulin resistance. Thus, this study provides new insight into the potential role of TIR in improving diabetes-related neuropathy.


Asunto(s)
Diabetes Mellitus Tipo 2 , Polipéptido Inhibidor Gástrico , Receptor del Péptido 2 Similar al Glucagón , Resistencia a la Insulina , MicroARNs , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Factor Neurotrófico Derivado del Encéfalo , Glucemia/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/farmacología
3.
Int J Mol Sci ; 24(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37298533

RESUMEN

Early life exposure to Endocrine Disruptor Chemicals (EDCs), such as the organophosphate pesticide Chlorpyrifos (CPF), affects the thyroid activity and dependent process, including the glucose metabolism. The damage of thyroid hormones (THs) as a mechanism of action of CPF is underestimated because the studies rarely consider that TH levels and signaling are customized peripherally. Here, we investigated the impairment of metabolism/signaling of THs and lipid/glucose metabolism in the livers of 6-month-old mice, developmentally and lifelong exposed to 0.1, 1, and 10 mg/kg/die CPF (F1) and their offspring similarly exposed (F2), analyzing the levels of transcripts of the enzymes involved in the metabolism of T3 (Dio1), lipids (Fasn, Acc1), and glucose (G6pase, Pck1). Both processes were altered only in F2 males, affected by hypothyroidism and by a systemic hyperglycemia linked to the activation of gluconeogenesis in mice exposed to 1 and 10 mg/kg/die CPF. Interestingly, we observed an increase in active FOXO1 protein due to a decrease in AKT phosphorylation, despite insulin signaling activation. Experiments in vitro revealed that chronic exposure to CPF affected glucose metabolism via the direct modulation of FOXO1 activity and T3 levels in hepatic cells. In conclusion, we described different sex and intergenerational effects of CPF exposure on the hepatic homeostasis of THs, their signaling, and, finally, glucose metabolism. The data points to FOXO1-T3-glucose signaling as a target of CPF in liver.


Asunto(s)
Cloropirifos , Hiperglucemia , Animales , Masculino , Ratones , Cloropirifos/metabolismo , Glucosa/metabolismo , Hiperglucemia/inducido químicamente , Hiperglucemia/metabolismo , Hígado/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Yodotironina Deyodinasa Tipo II
4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769379

RESUMEN

Although the imbalance of circulating levels of Thyroid Hormones (THs) affects female fertility in vertebrates, its involvement in the promotion of Premature Ovarian Aging (POA) is debated. Therefore, altered synthesis of THs in both thyroid and ovary can be a trait of POA. We investigated the relationship between abnormal TH signaling, dysthyroidism, and POA in evolutionary distant vertebrates: from zebrafish to humans. Ovarian T3 signaling/metabolism was evaluated by measuring T3 levels, T3 responsive transcript, and protein levels along with transcripts governing T3 availability (deiodinases) and signaling (TH receptors) in distinct models of POA depending on genetic background and environmental exposures (e.g., diets, pesticides). Expression levels of well-known (Amh, Gdf9, and Inhibins) and novel (miR143/145 and Gas5) biomarkers of POA were assessed. Ovarian dysthyroidism was slightly influenced by genetics since very few differences were found between C57BL/6J and FVB/NJ females. However, diets exacerbated it in a strain-dependent manner. Similar findings were observed in zebrafish and mouse models of POA induced by developmental and long-life exposure to low-dose chlorpyrifos (CPF). Lastly, the T3 decrease in follicular fluids from women affected by diminished ovarian reserve, as well as of the transcripts modulating T3 signaling/availability in the cumulus cells, confirmed ovarian dysthyroidism as a common and evolutionary conserved trait of POA.


Asunto(s)
MicroARNs , Ovario , Ratones , Animales , Femenino , Humanos , Ovario/metabolismo , Pez Cebra/metabolismo , Ratones Endogámicos C57BL , Hormonas Tiroideas/metabolismo , Envejecimiento , MicroARNs/metabolismo
5.
Mol Cancer ; 21(1): 125, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35681235

RESUMEN

BACKGROUND: The dynamic epigenome and proteins specialized in the interpretation of epigenetic marks critically contribute to leukemic pathogenesis but also offer alternative therapeutic avenues. Targeting newly discovered chromatin readers involved in leukemogenesis may thus provide new anticancer strategies. Accumulating evidence suggests that the PRC1 complex member CBX2 is overexpressed in solid tumors and promotes cancer cell survival. However, its role in leukemia is still unclear. METHODS: We exploited reverse genetic approaches to investigate the role of CBX2 in human leukemic cell lines and ex vivo samples. We also analyzed phenotypic effects following CBX2 silencing using cellular and molecular assays and related functional mechanisms by ATAC-seq and RNA-seq. We then performed bioinformatic analysis of ChIP-seq data to explore the influence of histone modifications in CBX2-mediated open chromatin sites. Lastly, we used molecular assays to determine the contribution of CBX2-regulated pathways to leukemic phenotype. RESULTS: We found CBX2 overexpressed in leukemia both in vitro and ex vivo samples compared to CD34+ cells. Decreased CBX2 RNA levels prompted a robust reduction in cell proliferation and induction of apoptosis. Similarly, sensitivity to CBX2 silencing was observed in primary acute myeloid leukemia samples. CBX2 suppression increased genome-wide chromatin accessibility followed by alteration of leukemic cell transcriptional programs, resulting in enrichment of cell death pathways and downregulation of survival genes. Intriguingly, CBX2 silencing induced epigenetic reprogramming at p38 MAPK-associated regulatory sites with consequent deregulation of gene expression. CONCLUSIONS: Our results identify CBX2 as a crucial player in leukemia progression and highlight a potential druggable CBX2-p38 MAPK network in AML.


Asunto(s)
Cromatina , Leucemia Mieloide Aguda , Complejo Represivo Polycomb 1 , Cromatina/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Cell Mol Life Sci ; 79(1): 50, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936029

RESUMEN

Circular RNA (circRNA) biogenesis requires a backsplicing reaction, promoted by inverted repeats in cis-flanking sequences and trans factors, such as RNA-binding proteins (RBPs). Among these, FUS plays a key role. During spermatogenesis and sperm maturation along the epididymis such a molecular mechanism has been poorly explored. With this in mind, we chose circCNOT6L as a study case and wild-type (WT) as well as cannabinoid receptor type-1 knock-out (Cb1-/-) male mice as animal models to analyze backsplicing mechanisms. Our results suggest that spermatozoa (SPZ) have an endogenous skill to circularize mRNAs, choosing FUS as modulator of backsplicing and under CB1 stimulation. A physical interaction between FUS and CNOT6L as well as a cooperation among FUS, RNA Polymerase II (RNApol2) and Quaking (QKI) take place in SPZ. Finally, to gain insight into FUS involvement in circCNOT6L biogenesis, FUS expression was reduced through RNA interference approach. Paternal transmission of FUS and CNOT6L to oocytes during fertilization was then assessed by using murine unfertilized oocytes (NF), one-cell zygotes (F) and murine oocytes undergoing parthenogenetic activation (PA) to exclude a maternal contribution. The role of circCNOT6L as an active regulator of zygote transition toward the 2-cell-like state was suggested using the Embryonic Stem Cell (ESC) system. Intriguingly, human SPZ exactly mirror murine SPZ.


Asunto(s)
ARN Circular/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Ribonucleasas/genética , Espermatozoides , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Oocitos , Espermatozoides/citología , Espermatozoides/metabolismo , Cigoto/metabolismo
7.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36430709

RESUMEN

STING is a transmembrane ER resident protein that was initially described as a regulator of innate immune response triggered by viral DNA and later found to be involved in a broader range of immune processes. Here, we assessed its role in the antigen presentation by generating a STING KO macrophage cell line. In the absence of STING, we observed an impaired OVA-derived SIINFEKL peptide presentation together with a decreased level of MHC-I complex on the plasma membrane, likely due to a decreased mRNA expression of ß2 m light chain as no relevant alterations of the peptide-loading complex (TAPs) were found. Moreover, JAK-STAT signaling resulted in impaired STING KO cells following OVA and LPS treatments, suggesting a dampened activation of immune response. Our data revealed a new molecular role of STING in immune mechanisms that could elucidate its role in the pathogenesis of autoimmune disorders and cancer.


Asunto(s)
Presentación de Antígeno , Macrófagos , Animales , Ratones , Macrófagos/metabolismo , Transducción de Señal , Inmunidad Innata , Antígenos de Histocompatibilidad , Proteínas de la Membrana/metabolismo
8.
Int J Mol Sci ; 22(17)2021 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-34502288

RESUMEN

Thyroid hormone levels are usually genetically determined. Thyrocytes produce a unique set of enzymes that are dedicated to thyroid hormone synthesis. While thyroid transcriptional regulation is well-characterized, post-transcriptional mechanisms have been less investigated. Here, we describe the involvement of ZFP36L2, a protein that stimulates degradation of target mRNAs, in thyroid development and function, by in vivo and in vitro gene targeting in thyrocytes. Thyroid-specific Zfp36l2-/- females were hypothyroid, with reduced levels of circulating free Thyroxine (cfT4) and Triiodothyronine (cfT3). Their hypothyroidism was due to dyshormonogenesis, already evident one week after weaning, while thyroid development appeared normal. We observed decreases in several thyroid-specific transcripts and proteins, such as Nis and its transcriptional regulators (Pax8 and Nkx2.1), and increased apoptosis in Zfp36l2-/- thyroids. Nis, Pax8, and Nkx2.1 mRNAs were also reduced in Zfp36l2 knock-out thyrocytes in vitro (L2KO), in which we confirmed the increased apoptosis. Finally, in L2KO cells, we showed an altered response to TSH stimulation regarding both thyroid-specific gene expression and cell proliferation and survival. This result was supported by increases in P21/WAF1 and p-P38MAPK levels. Mechanistically, we confirmed Notch1 as a target of ZFP36L2 in the thyroid since its levels were increased in both in vitro and in vivo models. In both models, the levels of Id4 mRNA, a potential inhibitor of Pax8 activity, were increased. Overall, the data indicate that the regulation of mRNA stability by ZFP36L2 is a mechanism that controls the function and survival of thyrocytes.


Asunto(s)
Glándula Tiroides/fisiología , Tristetraprolina/fisiología , Animales , Apoptosis/fisiología , Línea Celular , Supervivencia Celular , Femenino , Eliminación de Gen , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Ratones Mutantes , Factor de Transcripción PAX8/genética , Ratas , Receptor Notch1/metabolismo , Glándula Tiroides/citología , Glándula Tiroides/efectos de los fármacos , Tirotropina/farmacología , Tristetraprolina/genética
9.
RNA Biol ; 16(9): 1237-1248, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31135264

RESUMEN

Circular RNAs (circRNAs) have a critical role in the control of gene expression. Their function in spermatozoa (SPZ) is unknown to date. Twenty-eight genes, involved in SPZ/testicular and epididymal physiology, were given in circBase database to find which of them may generate circular transcripts. We focused on circNAPEPLDiso1, one of the circular RNA isoforms of NAPEPLD transcript, because expressed in human and murine SPZ. In order to functionally characterize circNAPEPLDiso1 as potential microRNA (miRNA) sponge, we performed circNAPEPLDiso1-miR-CATCH and then profiled the expression of 754 miRNAs, by using TaqMan® Low Density Arrays. Among them, miRNAs 146a-5p, 203a-3p, 302c-3p, 766-3p and 1260a (some of them previously shown to be expressed in the oocyte), resulted enriched in circNAPEPLDiso1-miR-CATCHed cell lysate: the network of interactions generated from their validated targets was centred on a core of genes involved in the control of cell cycle. Moreover, computational analysis of circNAPEPLDiso1 sequence also showed its potential translation in a short form of NAPEPLD protein. Interestingly, the expression analysis in murine-unfertilized oocytes revealed low and high levels of circNAPEPLDiso1 and circNAPEPLDiso2, respectively. After fertilization, circNAPEPLDiso1 expression significantly increased, instead circNAPEPLDiso2 expression appeared constant. Based on these data, we suggest that SPZ-derived circNAPEPLDiso1 physically interacts with miRNAs primarily involved in the control of cell cycle; we hypothesize that it may represent a paternal cytoplasmic contribution to the zygote and function as a miRNA decoy inside the fertilized oocytes to regulate the first stages of embryo development. This role is proposed here for the first time.


Asunto(s)
Regulación de la Expresión Génica , MicroARNs/metabolismo , Oocitos/metabolismo , ARN Circular/genética , Espermatozoides/metabolismo , Secuencia de Aminoácidos , Animales , Simulación por Computador , Factor 4A Eucariótico de Iniciación/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , MicroARNs/genética , ARN Circular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/genética , Cigoto/metabolismo
10.
Int J Mol Sci ; 18(11)2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29156651

RESUMEN

chlorpyrifos (CPF) is an organophosphate insecticide used to control pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce cerebral cortex thinning, alteration of long-term brain cognitive function, and Parkinson-like symptoms, but the mechanisms of these processes are not fully understood. In this study, we aimed to gain a deeper understanding of the alterations induced in the brains of mice chronically exposed to CPF by dietary intake. For our purpose, we analysed F1 offspring (sacrificed at 3 and 8 months) of Mus musculus, treated in utero and postnatally with 3 different doses of CPF (0.1-1-10 mg/kg/day). Using RT² Profiler PCR Arrays, we evaluated the alterations in the expression of 84 genes associated with neurodegenerative diseases. In the brains of exposed mice, we evidenced a clear dose-response relationship for AChE inhibition and alterations of gene expression. Some of the genes that were steadily down-regulated, such as Pink1, Park 2, Sv2b, Gabbr2, Sept5 and Atxn2, were directly related to Parkinson's onset. Our experimental results shed light on the possibility that long-term CPF exposure may exert membrane signalling alterations which make brain cells more susceptible to develop neurodegenerative diseases.


Asunto(s)
Encéfalo/metabolismo , Cloropirifos/toxicidad , Exposición Materna/efectos adversos , Enfermedad de Parkinson Secundaria/genética , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Exposición Dietética/efectos adversos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Insecticidas/toxicidad , Ratones , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/patología , Biosíntesis de Proteínas/efectos de los fármacos
11.
Proteomics ; 16(2): 288-300, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26508451

RESUMEN

Understanding of the role of estrogen receptors (ERα and ERß) in the pathophysiology of breast cancer (BC) has considerably increased in last decades. Despite sharing a similar structure, these two transcription factors often exert opposite roles in BC. In addition, it has been shown that their transcriptional activity is not strictly associated to ligand activation and that unliganded ERs are able to "have a life on their own." This appears to be mainly due to ligand-independent mechanisms leading to ERs PTMs or to their recruitment to specific protein complexes, dependent on cellular context. Furthermore, a significant unliganded ER activity, probably independent by the activation of other pathways, has been recently reported to affect gene transcription, microRNA expression, and downstream proteome. In this review, we describe recent findings on nuclear and cytoplasmic unliganded ERα and ERß activity. We focus on functional genomics, epigenomics, and interaction proteomics data, including PTM induced by ERs-modulated miRNAs in the BC context. A better comprehension of the molecular events controlled by unliganded ERs activity in BC pathogenesis is crucial since it may impact the therapeutic approach to the initial or acquired resistance to endocrine therapies, frequently experienced in the treatment of BC.


Asunto(s)
Receptores de Estrógenos/fisiología , Animales , Estrógenos/fisiología , Regulación de la Expresión Génica , Humanos , Ligandos , Proteoma/genética , Proteoma/metabolismo , Proteómica , Transducción de Señal
12.
Pharmacol Res ; 113(Pt A): 376-383, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27641926

RESUMEN

Bisphenol A is an environment-polluting industrial chemical able to interfere with the endocrine system. An obesogenic effect in perinatally exposed rodents has been described as estrogenic activity. We exposed male mice to Bisphenol A during fetal-perinatal period (from 10 days post coitum to 31 days post partum) and investigated the effects of this early-life exposure at 78 days of age. Body weight, food intake, fat mass, and hypothalamic signals related to anorexigenic control of food intake were analyzed. Results show that Bisphenol A exposure reduced body weight and food intake. In addition, the exposure decreased epididymal fat mass and adiposity, acting negatively on adipocyte volume. At hypothalamic level, Bisphenol A exposure reduced the expression of the cannabinoid receptor 1 and induced gene expression of cocaine and amphetamine-regulated transcript-1. This observation suggests that Bisphenol A induces activation of anorexigenic signals via down-regulation of the hypothalamic cannabinoid receptor 1 with negative impact on food intake.


Asunto(s)
Depresores del Apetito/farmacología , Compuestos de Bencidrilo/farmacología , Cannabinoides/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Fenoles/farmacología , Receptor Cannabinoide CB1/metabolismo , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adiposidad/efectos de los fármacos , Animales , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones
13.
Mol Cell Proteomics ; 13(4): 1076-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24525454

RESUMEN

Estrogen receptor ß (ERß) is a member of the nuclear receptor family of homeostatic regulators that is frequently lost in breast cancer (BC), where its presence correlates with a better prognosis and a less aggressive clinical outcome of the disease. In contrast to ERα, its closest homolog, ERß shows significant estrogen-independent activities, including the ability to inhibit cell cycle progression and regulate gene transcription in the absence of the ligand. Investigating the nature and extent of this constitutive activity of ERß in BC MCF-7 and ZR-75.1 cells by means of microRNA (miRNA) sequencing, we identified 30 miRNAs differentially expressed in ERß+ versus ERß- cells in the absence of ligand, including up-regulated oncosuppressor miRs such miR-30a. In addition, a significant fraction of >1,600 unique proteins identified in MCF-7 cells by iTRAQ quantitative proteomics were either increased or decreased by ERß, revealing regulation of multiple cell pathways by ligand-free receptors. Transcriptome analysis showed that for a large number of proteins regulated by ERß, the corresponding mRNAs are unaffected, including a large number of putative targets of ERß-regulated miRNAs, indicating a central role of miRNAs in mediating BC cell proteome regulation by ERß. Expression of a mimic of miR-30a-5p, a direct target and downstream effector of ERß in BC, led to the identification of several target transcripts of this miRNA, including 11 encoding proteins whose intracellular concentration was significantly affected by unliganded receptor. These results demonstrate a significant effect of ligand-free ERß on BC cell functions via modulation of the cell proteome and suggest that miRNA regulation might represent a key event in the control of the biological and clinical phenotype of hormone-responsive BC by this nuclear receptor.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor beta de Estrógeno/metabolismo , Estrógenos/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Receptor beta de Estrógeno/genética , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Células MCF-7 , Proteómica , Análisis de Secuencia de ARN
14.
Proteomics ; 15(11): 1801-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25604459

RESUMEN

Estrogen receptor subtypes (ERα and ERß) are transcription factors sharing a similar structure but exerting opposite roles in breast cancer cells. Besides the well-characterized genomic actions of nuclear ERs upon ligand binding, specific actions of ligand-free ERs in the cytoplasm also affect cellular functions. The identification of cytoplasmic interaction partners of unliganded ERα and ERß may help characterize the molecular basis of the extra-nuclear mechanism of action of these receptors, revealing novel mechanisms to explain their role in breast cancer response or resistance to endocrine therapy. To this aim, cytoplasmic extracts from human breast cancer MCF-7 cells stably expressing tandem affinity purification-tagged ERα and ERß and maintained in estrogen-free medium were subject to affinity-purification and MS analysis, leading to the identification of 84 and 142 proteins associated with unliganded ERα and ERß, respectively. Functional analyses of ER subtype-specific interactomes revealed significant differences in the molecular pathways targeted by each receptor in the cytoplasm. This work, reporting the first identification of the unliganded ERα and ERß cytoplasmic interactomes in breast cancer cells, provides novel experimental evidence on the nongenomic effects of ERs in the absence of hormonal stimulus. All MS data have been deposited in the ProteomeXchange with identifier PXD001202 (http://proteomecentral.proteomexchange.org/dataset/PXD001202).


Asunto(s)
Neoplasias de la Mama/metabolismo , Citoplasma/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Mapeo de Interacción de Proteínas/métodos , Neoplasias de la Mama/patología , Femenino , Humanos , Células MCF-7/metabolismo , Espectrometría de Masas
15.
BMC Genomics ; 15: 1067, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25475078

RESUMEN

BACKGROUND: Comparison of toxicogenomic data facilitates the identification of deregulated gene patterns and maximizes health risk prediction in human. RESULTS: Here, we performed phenotypic anchoring on the effects of acute exposure to low-grade polluted groundwater using mouse and zebrafish. Also, we evaluated two windows of chronic exposure in mouse, starting in utero and at the end of lactation. Bioinformatic analysis of livers microarray data showed that the number of deregulated biofunctions and pathways is higher after acute exposure, compared to the chronic one. It also revealed specific profiles of altered gene expression in all treatments, pointing to stress response/mitochondrial pathways as major players of environmental toxicity. Of note, dysfunction of steroid hormones was also predicted by bioinformatic analysis and verified in both models by traditional approaches, serum estrogens measurement and vitellogenin mRNA determination in mice and zebrafish, respectively. CONCLUSIONS: In our report, phenotypic anchoring in two vertebrate model organisms highlights the toxicity of low-grade pollution, with varying susceptibility based on exposure window. The overlay of zebrafish and mice deregulated pathways, more than single genes, is useful in risk identification from chemicals implicated in the observed effects.


Asunto(s)
Agua Subterránea/química , Fenotipo , Toxicogenética , Contaminación del Agua/efectos adversos , Animales , Biomarcadores , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Agua Subterránea/análisis , Hígado/efectos de los fármacos , Hígado/metabolismo , Pruebas de Función Hepática , Masculino , Ratones , Reproducibilidad de los Resultados , Especificidad de la Especie , Factores de Tiempo , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica , Pez Cebra
16.
Mol Ther Nucleic Acids ; 35(1): 102140, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38425711

RESUMEN

MicroRNAs (miRNAs) are involved in post-transcriptional gene expression regulation and in mechanisms of cancer growth and metastases. In this light, miRNAs could be promising therapeutic targets and biomarkers in clinical practice. Therefore, we investigated if specific miRNAs and their target genes contribute to laryngeal squamous cell carcinoma (LSCC) development. We found a significant decrease of miR-449a in LSCC patients with nodal metastases (63.3%) compared with patients without nodal involvement (44%). The AmpliSeq Transcriptome of HNO-210 miR-449a-transfected cell lines allowed the identification of IL6-R as a potential target. Moreover, the downregulation of IL6-R and the phosphorylation reduction of the downstream signaling effectors, suggested the inhibition of the IL-6 trans-signaling pathway. These biochemical effects were paralleled by a significant inhibition of invasion and migration in vitro and in vivo, supporting an involvement of epithelial-mesenchymal transition. These findings indicate that miR-449a contributes to suppress the metastasization of LSCC by the IL-6 trans-signaling block and affects sensitivity to external stimuli that mimic pro-inflammatory conditions.

17.
Commun Biol ; 7(1): 208, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379085

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common kidney cancer in the adult population. Late diagnosis, resistance to therapeutics and recurrence of metastatic lesions account for the highest mortality rate among kidney cancer patients. Identifying novel biomarkers for early cancer detection and elucidating the mechanisms underlying ccRCC will provide clues to treat this aggressive malignant tumor. Here, we report that the ubiquitin ligase praja2 forms a complex with-and ubiquitylates the AP2 adapter complex, contributing to receptor endocytosis and clearance. In human RCC tissues and cells, downregulation of praja2 by oncogenic miRNAs (oncomiRs) and the proteasome markedly impairs endocytosis and clearance of the epidermal growth factor receptor (EGFR), and amplifies downstream mitogenic and proliferative signaling. Restoring praja2 levels in RCC cells downregulates EGFR, rewires cancer cell metabolism and ultimately inhibits tumor cell growth and metastasis. Accordingly, genetic ablation of praja2 in mice upregulates RTKs (i.e. EGFR and VEGFR) and induces epithelial and vascular alterations in the kidney tissue.In summary, our findings identify a regulatory loop between oncomiRs and the ubiquitin proteasome system that finely controls RTKs endocytosis and clearance, positively impacting mitogenic signaling and kidney cancer growth.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Adulto , Animales , Humanos , Ratones , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Regulación hacia Abajo , Endocitosis , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética , Ubiquitina/metabolismo
18.
J Proteome Res ; 12(1): 421-31, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23170835

RESUMEN

Estrogen receptor alpha (ERα) is a ligand-activated transcription factor that controls key cellular pathways via protein-protein interactions involving multiple components of transcriptional coregulator and signal transduction complexes. Natural and synthetic ERα ligands are classified as agonists (17ß-estradiol/E(2)), selective estrogen receptor modulators (SERMs: Tamoxifen/Tam and Raloxifene/Ral), and pure antagonists (ICI 182,780-Fulvestrant/ICI), according to the response they elicit in hormone-responsive cells. Crystallographic analyses reveal ligand-dependent ERα conformations, characterized by specific surface docking sites for functional protein-protein interactions, whose identification is needed to understand antiestrogen effects on estrogen target tissues, in particular breast cancer (BC). Tandem affinity purification (TAP) coupled to mass spectrometry was applied here to map nuclear ERα interactomes dependent upon different classes of ligands in hormone-responsive BC cells. Comparative analyses of agonist (E(2))- vs antagonist (Tam, Ral or ICI)-bound ERα interacting proteins reveal significant differences among ER ligands that relate with their biological activity, identifying novel functional partners of antiestrogen-ERα complexes in human BC cell nuclei. In particular, the E(2)-dependent nuclear ERα interactome is different and more complex than those elicited by Tam, Ral, or ICI, which, in turn, are significantly divergent from each other, a result that provides clues to explain the pharmacological specificities of these compounds.


Asunto(s)
Neoplasias de la Mama , Moduladores de los Receptores de Estrógeno , Receptor alfa de Estrógeno , Proteómica , Moduladores Selectivos de los Receptores de Estrógeno/farmacología , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Estradiol/análogos & derivados , Estradiol/farmacología , Moduladores de los Receptores de Estrógeno/química , Moduladores de los Receptores de Estrógeno/metabolismo , Receptor alfa de Estrógeno/química , Receptor alfa de Estrógeno/metabolismo , Femenino , Fulvestrant , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Células MCF-7 , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Conformación Proteica/efectos de los fármacos
19.
Nat Genet ; 31(2): 210-5, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12021785

RESUMEN

Expression of oncogenic Ras in primary human cells activates p53, thereby protecting cells from transformation. We show that in Ras-expressing IMR-90 cells, p53 is phosphorylated at Ser33 and Ser46 by the p38 mitogen-activated protein kinase (MAPK). Activity of p38 MAPK is regulated by the p53-inducible phosphatase PPM1D, creating a potential feedback loop. Expression of oncogenic Ras suppresses PPM1D mRNA induction, leaving p53 phosphorylated at Ser33 and Ser46 and in an active state. Retrovirus-mediated overexpression of PPM1D reduced p53 phosphorylation at these sites, abrogated Ras-induced apoptosis and partially rescued cells from cell-cycle arrest. Inactivation of p38 MAPK (the product of Mapk14) in vivo by gene targeting or by PPM1D overexpression expedited tumor formation after injection of mouse embryo fibroblasts (MEFs) expressing E1A+Ras into nude mice. The gene encoding PPM1D (PPM1D, at 17q22/q23) is amplified in human breast-tumor cell lines and in approximately 11% of primary breast tumors, most of which harbor wildtype p53. These findings suggest that inactivation of the p38 MAPK through PPM1D overexpression resulting from PPM1D amplification contributes to the development of human cancers by suppressing p53 activation.


Asunto(s)
Neoplasias de la Mama/genética , Cromosomas Humanos Par 17 , Amplificación de Genes , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas de Neoplasias , Fosfoproteínas Fosfatasas/genética , Proteína p53 Supresora de Tumor/genética , Animales , Neoplasias de la Mama/etiología , Femenino , Fibroblastos/fisiología , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Humanos , Ratones , Proteínas Quinasas Activadas por Mitógenos/fisiología , Fosfoproteínas Fosfatasas/fisiología , Fosforilación , Proteína Fosfatasa 2C , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos
20.
Ageing Res Rev ; 92: 102131, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37984626

RESUMEN

Here we propose that SGLT2 inhibitors (SGLT2i), a class of drugs primarily used to treat type 2 diabetes, could also be repositioned as anti-aging senomorphic drugs (agents that prevent the extrinsic harmful effects of senescent cells). As observed for metformin, another anti-diabetic drug with established anti-aging potential, increasing evidence suggests that SGLT2i can modulate some relevant pathways associated with the aging process, such as free radical production, cellular energy regulation through AMP-activated protein kinase (AMPK), autophagy, and the activation of nuclear factor (NF)-kB/inflammasome. Some interesting pro-healthy effects were also observed on human microbiota. All these mechanisms converge on fueling a systemic proinflammatory condition called inflammaging, now recognized as the main risk factor for accelerated aging and increased risk of age-related disease development and progression. Inflammaging can be worsened by cellular senescence and immunosenescence, which contributes to the increased burden of senescent cells during aging, perpetuating the proinflammatory condition. Interestingly, increasing evidence suggested the direct effects of SGLT-2i against senescent cells, chronic activation of immune cells, and metabolic alterations induced by overnutrition (meta-inflammation). In this framework, we analyzed and discussed the multifaceted impact of SGLT2i, compared with metformin effects, as a potential anti-aging drug beyond diabetes management. Despite promising results in experimental studies, rigorous investigations with well-designed cellular and clinical investigations will need to validate SGLT2 inhibitors' anti-aging effects.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Envejecimiento , Senescencia Celular , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Metformina/farmacología , Metformina/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA