Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
New Phytol ; 235(6): 2365-2377, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35901264

RESUMEN

Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.


Asunto(s)
Fabaceae , Rhizobium , Ecosistema , Fabaceae/genética , Nitrógeno , Fijación del Nitrógeno , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas , Simbiosis
2.
Ecol Evol ; 6(10): 3417-29, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27127608

RESUMEN

UNLABELLED: Forest encroachment into savanna is occurring at an unprecedented rate across tropical Africa, leading to a loss of valuable savanna habitat. One of the first stages of forest encroachment is the establishment of tree seedlings at the forest-savanna transition. This study examines the demographic bottleneck in the seedlings of five species of tropical forest pioneer trees in a forest-savanna transition zone in West Africa. Five species of tropical pioneer forest tree seedlings were planted in savanna, mixed/transition, and forest vegetation types and grown for 12 months, during which time fire occurred in the area. We examined seedling survival rates, height, and stem diameter before and after fire; and seedling biomass and starch allocation patterns after fire. Seedling survival rates were significantly affected by fire, drought, and vegetation type. Seedlings that preferentially allocated more resources to increasing root and leaf starch (starch storage helps recovery from fire) survived better in savanna environments (frequently burnt), while seedlings that allocated more resources to growth and resource-capture traits (height, the number of leaves, stem diameter, specific leaf area, specific root length, root-to-shoot ratio) survived better in mixed/transition and forest environments. Larger (taller with a greater stem diameter) seedlings survived burning better than smaller seedlings. However, larger seedlings survived better than smaller ones even in the absence of fire. Bombax buonopozense was the forest species that survived best in the savanna environment, likely as a result of increased access to light allowing greater investment in belowground starch storage capacity and therefore a greater ability to cope with fire. SYNTHESIS: Forest pioneer tree species survived best through fire and drought in the savanna compared to the other two vegetation types. This was likely a result of the open-canopied savanna providing greater access to light, thereby releasing seedlings from light limitation and enabling them to make and store more starch. Fire can be used as a management tool for controlling forest encroachment into savanna as it significantly affects seedling survival. However, if rainfall increases as a result of global change factors, encroachment may be more difficult to control as seedling survival ostensibly increases when the pressure of drought is lifted. We propose B. buonopozense as an indicator species for forest encroachment into savanna in West African forest-savanna transitions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA