Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 81(6): 1200-1215.e9, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33639093

RESUMEN

Ribosome biogenesis is a fundamental multi-step cellular process that culminates in the formation of ribosomal subunits, whose production and modification are regulated by numerous biogenesis factors. In this study, we analyze physiologic prokaryotic ribosome biogenesis by isolating bona fide pre-50S subunits from an Escherichia coli strain with the biogenesis factor ObgE, affinity tagged at its native gene locus. Our integrative structural approach reveals a network of interacting biogenesis factors consisting of YjgA, RluD, RsfS, and ObgE on the immature pre-50S subunit. In addition, our study provides mechanistic insight into how the GTPase ObgE, in concert with other biogenesis factors, facilitates the maturation of the 50S functional core and reveals both conserved and divergent evolutionary features of ribosome biogenesis between prokaryotes and eukaryotes.


Asunto(s)
Proteínas de Escherichia coli , Evolución Molecular , Sitios Genéticos , Hidroliasas , Proteínas de Unión al GTP Monoméricas , Subunidades Ribosómicas Grandes Bacterianas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliasas/química , Hidroliasas/genética , Hidroliasas/metabolismo , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo , Subunidades Ribosómicas Grandes Bacterianas/química , Subunidades Ribosómicas Grandes Bacterianas/genética , Subunidades Ribosómicas Grandes Bacterianas/metabolismo
2.
Nucleic Acids Res ; 50(8): 4601-4615, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35466371

RESUMEN

Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme's shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.


Asunto(s)
Aminoacil-ARNt Sintetasas , Euryarchaeota , Aminoacil-ARNt Sintetasas/metabolismo , Lisina/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Código Genético , Euryarchaeota/genética , Aminoácidos/genética
3.
J Biol Chem ; 298(11): 102521, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152750

RESUMEN

The pyrrolysyl-tRNA synthetase (PylRS) facilitates the cotranslational installation of the 22nd amino acid pyrrolysine. Owing to its tolerance for diverse amino acid substrates, and its orthogonality in multiple organisms, PylRS has emerged as a major route to install noncanonical amino acids into proteins in living cells. Recently, a novel class of PylRS enzymes was identified in a subset of methanogenic archaea. Enzymes within this class (ΔPylSn) lack the N-terminal tRNA-binding domain that is widely conserved amongst PylRS enzymes, yet remain active and orthogonal in bacteria and eukaryotes. In this study, we use biochemical and in vivo UAG-readthrough assays to characterize the aminoacylation efficiency and substrate spectrum of a ΔPylSn class PylRS from the archaeon Candidatus Methanomethylophilus alvus. We show that, compared with the full-length enzyme from Methanosarcina mazei, the Ca. M. alvus PylRS displays reduced aminoacylation efficiency but an expanded amino acid substrate spectrum. To gain insight into the evolution of ΔPylSn enzymes, we performed molecular phylogeny using 156 PylRS and 105 pyrrolysine tRNA (tRNAPyl) sequences from diverse archaea and bacteria. This analysis suggests that the PylRS•tRNAPyl pair diverged before the evolution of the three domains of life, placing an early limit on the evolution of the Pyl-decoding trait. Furthermore, our results document the coevolutionary history of PylRS and tRNAPyl and reveal the emergence of tRNAPyl sequences with unique A73 and U73 discriminator bases. The orthogonality of these tRNAPyl species with the more common G73-containing tRNAPyl will enable future efforts to engineer PylRS systems for further genetic code expansion.


Asunto(s)
Aminoacil-ARNt Sintetasas , Archaea , Código Genético , Lisina , Aminoacil-ARNt Sintetasas/metabolismo , Archaea/enzimología , Archaea/genética , Lisina/análogos & derivados , Lisina/genética , Methanosarcina , ARN de Transferencia/genética
4.
RNA ; 24(11): 1512-1519, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30076205

RESUMEN

Reconstitution of ribosomes in vitro from individual ribosomal proteins provides a powerful tool for understanding the ribosome assembly process including the sequential incorporation of ribosomal proteins. However, conventional assembly methods require high-salt conditions for efficient ribosome assembly. In this study, we reconstituted 30S ribosomal subunits from individually purified ribosomal proteins in the presence of ribosome biogenesis factors. In this system, two GTPases (Era and YjeQ) facilitated assembly of a 30S subunit exhibiting poly(U)-directed polyphenylalanine synthesis and native protein synthesis under physiological conditions. This in vitro system permits a study of the assembly process and function of ribosome biogenesis factors, and it will facilitate the generation of ribosomes from DNA without using cells.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Ribosomas/metabolismo , Evolución Biológica , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Proteínas Recombinantes
5.
Angew Chem Int Ed Engl ; 59(8): 3122-3126, 2020 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-31828898

RESUMEN

By transplanting identity elements into E. coli tRNAfMet , we have engineered an orthogonal initiator tRNA (itRNATy2 ) that is a substrate for Methanocaldococcus jannaschii TyrRS. We demonstrate that itRNATy2 can initiate translation in vivo with aromatic non-canonical amino acids (ncAAs) bearing diverse sidechains. Although the initial system suffered from low yields, deleting redundant copies of tRNAfMet from the genome afforded an E. coli strain in which the efficiency of non-canonical initiation equals elongation. With this improved system we produced a protein containing two distinct ncAAs at the first and second positions, an initial step towards producing completely unnatural polypeptides in vivo. This work provides a valuable tool to synthetic biology and demonstrates remarkable versatility of the E. coli translational machinery for initiation with ncAAs in vivo.


Asunto(s)
Aminoácidos/metabolismo , Biosíntesis de Proteínas/fisiología , Ingeniería de Proteínas/métodos , Humanos
6.
Orig Life Evol Biosph ; 44(2): 75-86, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25399308

RESUMEN

At some stage of evolution, genes of organisms may have encoded proteins that were synthesized using fewer than 20 unique amino acids. Similar to evolution of the natural 19-amino-acid proteins GroEL/ES, proteins composed of 19 unique amino acids would have been able to evolve by accumulating beneficial mutations within the 19-amino-acid repertoire encoded in an ancestral genetic code. Because Trp is thought to be the last amino acid included in the canonical 20-amino-acid repertoire, this late stage of protein evolution could be mimicked by experimental evolution of 19-amino-acid proteins without tryptophan (Trp). To further understand the evolution of proteins, we tried to mimic the evolution of a 19-amino-acid protein involving the accumulation of beneficial mutations using directed evolution by random mutagenesis on the whole targeted gene sequence. We created active 19-amino-acid green fluorescent proteins (GFPs) without Trp from a poorly fluorescent 19-amino-acid mutant, S1-W57F, by using directed evolution with two rounds of mutagenesis and selection. The N105I and S205T mutations showed beneficial effects on the S1-W57F mutant. When these two mutations were combined on S1-W57F, we observed an additive effect on the fluorescence intensity. In contrast, these mutations showed no clear improvement individually or in combination on GFPS1, which is the parental GFP mutant composed of 20 amino acids. Our results provide an additional example for the experimental evolution of 19-amino-acid proteins without Trp, and would help understand the mechanisms underlying the evolution of 19-amino-acid proteins. (236 words).


Asunto(s)
Evolución Molecular Dirigida , Escherichia coli/genética , Proteínas Fluorescentes Verdes/genética , Triptófano/deficiencia , Secuencia de Aminoácidos , Escherichia coli/metabolismo , Fluorescencia , Código Genético , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Puntual , Biosíntesis de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Selección Genética , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Triptófano/genética
8.
Methods Mol Biol ; 2433: 151-168, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985743

RESUMEN

Reconstitution of a complicated system with a minimal set of components is essential for understanding the mechanisms of how the input is reflected in the output, which is fundamental for further engineering of the corresponding system. We have recently developed a reconstituted cell-free protein synthesis system equipped only with 21 in vitro transcribed tRNAs, one of the minimal systems for understanding the genetic code decoding mechanisms. Introduction of several nucleotide modifications to the transcribed tRNAs showed improvement of both protein synthesis efficiency and its fidelity, suggesting various combinations of tRNAs and their modifications can be evaluated in the developed system. In this chapter, we describe how to prepare this minimal system. Methods for preparing the transcribed tRNAs, their modifications, and the protein production using the set of prepared tRNAs are shown.


Asunto(s)
Nucleótidos , ARN de Transferencia , Sistema Libre de Células/metabolismo , Código Genético , Nucleótidos/genética , Nucleótidos/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
9.
Sci Rep ; 11(1): 13857, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34226577

RESUMEN

The developmental patterns of many organisms are orchestrated by the diffusion of factors. Here, we report a novel pattern on plant stems that appears to be controlled by inhibitor diffusion. Prickles on rose stems appear to be randomly distributed, but we deciphered spatial patterns of prickles on Rosa hybrida cv. 'Red Queen' stem. The prickles primarily emerged at 90 to 135 degrees from the spiral phyllotaxis that connected leaf primordia. We proposed a simple mathematical model that explained the emergence of the spatial patterns and reproduced the prickle density distribution on rose stems. We confirmed the model can reproduce the observed prickle patterning on stems of other plant species using other model parameters. These results indicated that the spatial patterns of prickles on stems of different plant species are organized by similar systems. Rose cultivation by humans has a long history. However, prickle development is still unclear and this is the first report of prickle spatial pattern with a mathematical model. Comprehensive analysis of the spatial pattern, genome, and metabolomics of other plant species may lead to novel insights for prickle development.

10.
Front Genet ; 12: 794509, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047015

RESUMEN

Universally present aminoacyl-tRNA synthetases (aaRSs) stringently recognize their cognate tRNAs and acylate them with one of the proteinogenic amino acids. However, some organisms possess aaRSs that deviate from the accurate translation of the genetic code and exhibit relaxed specificity toward their tRNA and/or amino acid substrates. Typically, these aaRSs are part of an indirect pathway in which multiple enzymes participate in the formation of the correct aminoacyl-tRNA product. The indirect cysteine (Cys)-tRNA pathway, originally thought to be restricted to methanogenic archaea, uses the unique O-phosphoseryl-tRNA synthetase (SepRS), which acylates the non-proteinogenic amino acid O-phosphoserine (Sep) onto tRNACys. Together with Sep-tRNA:Cys-tRNA synthase (SepCysS) and the adapter protein SepCysE, SepRS forms a transsulfursome complex responsible for shuttling Sep-tRNACys to SepCysS for conversion of the tRNA-bound Sep to Cys. Here, we report a comprehensive bioinformatic analysis of the diversity of indirect Cys encoding systems. These systems are present in more diverse groups of bacteria and archaea than previously known. Given the occurrence and distribution of some genes consistently flanking SepRS, it is likely that this gene was part of an ancient operon that suffered a gradual loss of its original components. Newly identified bacterial SepRS sequences strengthen the suggestion that this lineage of enzymes may not rely on the m1G37 identity determinant in tRNA. Some bacterial SepRSs possess an N-terminal fusion resembling a threonyl-tRNA synthetase editing domain, which interestingly is frequently observed in the vicinity of archaeal SepCysS genes. We also found several highly degenerate SepRS genes that likely have altered amino acid specificity. Cross-analysis of selenocysteine (Sec)-utilizing traits confirmed the co-occurrence of SepCysE and the Sec-utilizing machinery in archaea, but also identified an unusual O-phosphoseryl-tRNASec kinase fusion with an archaeal Sec elongation factor in some lineages, where it may serve in place of SepCysE to prevent crosstalk between the two minor aminoacylation systems. These results shed new light on the variations in SepRS and SepCysS enzymes that may reflect adaptation to lifestyle and habitat, and provide new information on the evolution of the genetic code.

11.
Front Bioeng Biotechnol ; 8: 598577, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195171

RESUMEN

Protein identification has gone beyond simply using protein/peptide tags and labeling canonical amino acids. Genetic code expansion has allowed residue- or site-specific incorporation of non-canonical amino acids into proteins. By taking advantage of the unique properties of non-canonical amino acids, we can identify spatiotemporal-specific protein states within living cells. Insertion of more than one non-canonical amino acid allows for selective labeling that can aid in the identification of weak or transient protein-protein interactions. This review will discuss recent studies applying genetic code expansion for protein labeling and identifying protein-protein interactions and offer considerations for future work in expanding genetic code expansion methods.

12.
Commun Biol ; 3(1): 142, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32214223

RESUMEN

In vitro reconstitution is a powerful tool for investigating ribosome functions and biogenesis, as well as discovering new ribosomal features. In this study, we integrated all of the processes required for Escherichia coli small ribosomal subunit assembly. In our method, termed fully Recombinant-based integrated Synthesis, Assembly, and Translation (R-iSAT), assembly and evaluation of the small ribosomal subunits are coupled with ribosomal RNA (rRNA) synthesis in a reconstituted cell-free protein synthesis system. By changing the components of R-iSAT, including recombinant ribosomal protein composition, we coupled ribosomal assembly with ribosomal protein synthesis, enabling functional synthesis of ribosomal proteins and subsequent subunit assembly. In addition, we assembled and evaluated subunits with mutations in both rRNA and ribosomal proteins. The study demonstrated that our scheme provides new ways to comprehensively analyze any elements of the small ribosomal subunit, with the goal of improving our understanding of ribosomal biogenesis, function, and engineering.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/metabolismo , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Transcripción Genética , Proteínas Bacterianas/genética , Escherichia coli/genética , Mutación , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas Bacterianas/genética
13.
Commun Biol ; 3(1): 350, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620935

RESUMEN

Entire reconstitution of tRNAs for active protein production in a cell-free system brings flexibility into the genetic code engineering. It can also contribute to the field of cell-free synthetic biology, which aims to construct self-replicable artificial cells. Herein, we developed a system equipped only with in vitro transcribed tRNA (iVTtRNA) based on a reconstituted cell-free protein synthesis (PURE) system. The developed system, consisting of 21 iVTtRNAs without nucleotide modifications, is able to synthesize active proteins according to the redesigned genetic code. Manipulation of iVTtRNA composition in the system enabled genetic code rewriting. Introduction of modified nucleotides into specific iVTtRNAs demonstrated to be effective for both protein yield and decoding fidelity, where the production yield of DHFR reached about 40% of the reaction with native tRNA at 30°C. The developed system will prove useful for studying decoding processes, and may be employed in genetic code and protein engineering applications.


Asunto(s)
Aminoácidos/metabolismo , Sistema Libre de Células/metabolismo , Código Genético , Biosíntesis de Proteínas , Ingeniería de Proteínas/métodos , Proteínas/metabolismo , ARN de Transferencia/metabolismo , Aminoácidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas/genética , ARN de Transferencia/química , ARN de Transferencia/genética , Transcripción Genética
14.
ACS Synth Biol ; 7(4): 953-961, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29510621

RESUMEN

Cell division is the most dynamic event in the cell cycle. Recently, efforts have been made to reconstruct it using the individual component proteins to obtain a better understanding of the process of self-reproduction of cells. However, such reconstruction studies are frequently hampered by difficulties in preparing membrane-associated proteins. Here we demonstrate a de novo synthesis approach based on a cell-free translation system. Genes for fundamental cell division proteins, FtsZ, FtsA, and ZipA, were expressed inside the lipid compartment of giant vesicles (GVs). The synthesized proteins showed polymerization, membrane localization, and eventually membrane deformation. Notably, we found that this morphological change of the vesicle is forced by only FtsZ and ZipA, which form clusters on the membrane at the vesicle interior. Our cell-free approach provides a platform for studying protein dynamics associated with lipid membrane and paves the way to create a synthetic cell that undergoes self-reproduction.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Proteínas Portadoras/biosíntesis , Proteínas de Ciclo Celular/biosíntesis , Proteínas del Citoesqueleto/biosíntesis , Proteínas de Escherichia coli/biosíntesis , Ingeniería de Proteínas/métodos , Liposomas Unilamelares/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Membrana Celular/metabolismo , Sistema Libre de Células , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanosina Trifosfato/metabolismo , Hidrólisis , Imagenología Tridimensional , Fosfatidilcolinas/metabolismo , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo
15.
ACS Synth Biol ; 3(3): 140-4, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24256181

RESUMEN

A "simplified genetic code", with only 19 amino acids assigned to the sense codons, was recently developed. In this study, we describe novel simplified codes in which multiple amino acids are simultaneously excluded from the universal code. In the simplest code, tryptophan, cysteine, tyrosine, and asparagine codons are assigned to serine by using four kinds of tRNA (Ser) variants. The results revealed that various sets of amino acids can easily be excluded from the universal code, using our strategy for genetic code simplification. A simplified genetic code is useful as an engineering tool for the improvement of industrial enzymes and pharmaceuticals, and also provides new insights into the assessment of protein evolution. Simplified codes in which multiple amino acids are simultaneously excluded from the code can be more effective tools than codes excluding only one amino acid.


Asunto(s)
Aminoácidos/genética , Codón/genética , Ingeniería de Proteínas/métodos , ARN de Transferencia/genética , Evolución Molecular , Modelos Genéticos , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA