Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39204529

RESUMEN

Potential photovoltaic technology includes the newly developed dye-sensitized solar cells (DSSCs) and bulk heterojunction (BHJ) solar cells. Owing to their diverse qualities, polymers can be employed in third-generation photovoltaic cells to specifically alter their device elements and frameworks. Polymers containing phenothiazine, either as a part of their structure or as a dopant, are easy and economical to synthesize, are soluble in common organic solvents, and have the potential to acquire desired electrochemical and photophysical properties by mere tuning of their chemical structures. Such polymers have therefore been used either as photosensitizers in dye-sensitized solar cells, where they have produced power conversion efficiency (PCE) values as high as 5.30%, or as donor or acceptor materials in bulk heterojunction solar cells. Furthermore, they have been employed to prepare liquid-free polymer electrolytes for dye-sensitized and bulk heterojunction solar cells, producing a PCE of 8.5% in the case of DSSCs. This paper reviews and analyzes almost all research works published to date on phenothiazine-based polymers and their uses in dye-sensitized and bulk heterojunction solar cells. The impacts of their structure and molecular weight and the amount when used as a dopant in other polymers on the absorption, photoluminescence, energy levels of frontier orbitals, and, finally, photovoltaic parameters are reviewed. The advantages of phenothiazine polymers for solar cells, the difficulties in their actual implementation and potential remedies are also evaluated.

2.
Polymers (Basel) ; 14(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35631829

RESUMEN

Third-generation solar cells, including dye-sensitized solar cells, bulk-heterojunction solar cells, and perovskite solar cells, are being intensively researched to obtain high efficiencies in converting solar energy into electricity. However, it is also important to note their stability over time and the devices' thermal or operating temperature range. Today's widely used polymeric materials are also used at various stages of the preparation of the complete device-it is worth mentioning that in dye-sensitized solar cells, suitable polymers can be used as flexible substrates counter-electrodes, gel electrolytes, and even dyes. In the case of bulk-heterojunction solar cells, they are used primarily as donor materials; however, there are reports in the literature of their use as acceptors. In perovskite devices, they are used as additives to improve the morphology of the perovskite, mainly as hole transport materials and also as additives to electron transport layers. Polymers, thanks to their numerous advantages, such as the possibility of practically any modification of their chemical structure and thus their physical and chemical properties, are increasingly used in devices that convert solar radiation into electrical energy, which is presented in this paper.

3.
Materials (Basel) ; 15(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36295266

RESUMEN

Three new azomethines based on triphenylamine with two or three substituents were obtained. Chemical structure and purity were confirmed by 1H NMR, FTIR elemental analysis and mass spectroscopy. The investigations were focused on the relationship between chemical structure and properties important for optoelectronic materials. Thus, the studies of thermal, optical and electrochemical properties were carried out based on differential scanning calorimetry, thermogravimetric analysis, electronic absorption, photoluminescence and cyclic voltammetry measurements. The ongoing consideration of experimental results was complemented by theoretical calculations using the density functional theory method. The donor activity of obtained compounds was tested in bulk-heterojuntion photovoltaic cells with structure ITO/PEDOT:PSS/imine:PCBM/Al and ITO/PEDOT:PSS/imine:P3HT:PCBM/Al). The effect of the presence of the amino-thiophene-3,4-dicarboxylic acid diethyl ester groups and various number of hexyloxyphenyl units on imines properties was demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA