Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 163(3): 670-83, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26496607

RESUMEN

Ethylene is a gaseous phytohormone that plays vital roles in plant growth and development. Previous studies uncovered EIN2 as an essential signal transducer linking ethylene perception on ER to transcriptional regulation in the nucleus through a "cleave and shuttle" model. In this study, we report another mechanism of EIN2-mediated ethylene signaling, whereby EIN2 imposes the translational repression of EBF1 and EBF2 mRNA. We find that the EBF1/2 3' UTRs mediate EIN2-directed translational repression and identify multiple poly-uridylates (PolyU) motifs as functional cis elements of 3' UTRs. Furthermore, we demonstrate that ethylene induces EIN2 to associate with 3' UTRs and target EBF1/2 mRNA to cytoplasmic processing-body (P-body) through interacting with multiple P-body factors, including EIN5 and PABs. Our study illustrates translational regulation as a key step in ethylene signaling and presents mRNA 3' UTR functioning as a "signal transducer" to sense and relay cellular signaling in plants. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Receptores de Superficie Celular/metabolismo , Proteínas de Arabidopsis/genética , Exorribonucleasas/metabolismo , Proteínas F-Box/genética , Conformación de Ácido Nucleico , Proteínas de Plantas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo
2.
Plant Physiol ; 186(1): 434-451, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33576799

RESUMEN

Trichomes are specialized epidermal cells that act as barriers against biotic and abiotic stresses. Although the formation of trichomes on hairy organs is well studied, the molecular mechanisms of trichome inhibition on smooth organs are still largely unknown. Here, we demonstrate that the CINCINNATA (CIN)-like TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors inhibit the formation of trichomes on cotyledons in Arabidopsis (Arabidopsis thaliana). The tcp2/3/4/5/10/13/17 septuple mutant produces cotyledons with ectopic trichomes on the adaxial sides. The expression patterns of TCP genes are developmentally regulated during cotyledon development. TCP proteins directly interact with GLABRA3 (GL3), a key component of the MYB transcription factor/basic helix-loop-helix domain protein/WD40-repeat proteins (MYB-bHLH-WD40, MBW) complex essential for trichome formation, to interfere with the transactivation activity of the MBW complex in cotyledons. TCPs also disrupt the MBW complex-R3 MYB negative feedback loop by directly promoting the expression of R3 MYB genes, which enhance the repression of the MBW complex. Our findings reveal a molecular framework in which TCPs suppress trichome formation on adaxial sides of cotyledons by repressing the activity of the MBW complex at the protein level and the transcripts of R3 MYB genes at the transcriptional level.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Diferenciación Celular/genética , Cotiledón/crecimiento & desarrollo , Factores de Transcripción/genética , Tricomas/crecimiento & desarrollo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotiledón/metabolismo , Factores de Transcripción/metabolismo , Tricomas/metabolismo
3.
Plant Cell ; 30(9): 1971-1988, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30104405

RESUMEN

The apical hook protects the meristems of dicot seedlings as they protrude through the soil; multiple factors, including phytohormones and light, mediate apical hook development. HOOKLESS1 (HLS1) plays an indispensable role, as HLS1 mutations cause a hookless phenotype. The ETHYLENE INSENSITIVE3 (EIN3) and EIN3-LIKE1 (EIL1) transcription factors integrate multiple signals (ethylene, gibberellins, and jasmonate) and activate HLS1 expression to enhance hook development. Here, we found that Arabidopsis thaliana PHYTOCHROME INTERACTING FACTOR (PIF) transcription factors act in parallel with EIN3/EIL1 and promote hook curvature by activating HLS1 transcription at a distinct binding motif. EIN3/EIL1 and PIFs can promote hook formation in the absence of the other. Jasmonate represses PIF function to inhibit hook development. Like EIN3 and EIL1, MYC2 interacts with PIF4 and hampers its activity. Acting together, EIN3/EIL1 and PIFs alleviate the negative effects of jasmonate/light and facilitate the positive effects of ethylene/gibberellins. Mutating EIN3/EIL1 and PIFs causes a complete hookless phenotype, marginal HLS1 expression, and insensitivity to upstream signals. Transcriptome profiling revealed that EIN3/EIL1 and PIFs additively and distinctly regulate a wide array of processes, including apical hook development. Together, our findings identify an integrated framework underlying the regulation of apical hook development and show that EIN3/EIL1 and PIFs fine-tune adaptive growth in response to hormone and light signals.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos/farmacología , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Proteínas Nucleares/genética , Oxilipinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/genética
4.
Proc Natl Acad Sci U S A ; 114(52): 13834-13839, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29233944

RESUMEN

Root hairs are an extensive structure of root epidermal cells and are critical for nutrient acquisition, soil anchorage, and environmental interactions in sessile plants. The phytohormone ethylene (ET) promotes root hair growth and also mediates the effects of different signals that stimulate hair cell development. However, the molecular basis of ET-induced root hair growth remains poorly understood. Here, we show that ET-activated transcription factor ETHYLENE-INSENSITIVE 3 (EIN3) physically interacts with ROOT HAIR DEFECTIVE 6 (RHD6), a well-documented positive regulator of hair cells, and that the two factors directly coactivate the hair length-determining gene RHD6-LIKE 4 (RSL4) to promote root hair elongation. Transcriptome analysis further revealed the parallel roles of the regulator pairs EIN3/EIL1 (EIN3-LIKE 1) and RHD6/RSL1 (RHD6-LIKE 1). EIN3/EIL1 and RHD6/RSL1 coordinately enhance root hair initiation by selectively regulating a subset of core root hair genes. Thus, our work reveals a key transcriptional complex consisting of EIN3/EIL1 and RHD6/RSL1 in the control of root hair initiation and elongation, and provides a molecular framework for the integration of environmental signals and intrinsic regulators in modulating plant organ development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas de Unión al ADN/metabolismo , Etilenos/farmacología , Proteínas Nucleares/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética
5.
Plant Cell ; 26(3): 1105-17, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24668749

RESUMEN

The apical hook is an essential structure that enables epigeal plants to protrude through the soil. Arabidopsis thaliana HOOKLESS1 (HLS1) is reported to be a key regulator of hook development and a direct target gene of the ethylene (ET)-activated transcription factors ETHYLENE INSENSITIVE3 (EIN3) and its close homolog EIN3-Like1. Previous research has shown that the phytohormones jasmonate (JA) and ET antagonistically regulate apical hook development, although the underlying molecular mechanism is largely unknown. Here, we report that JA represses hook formation by reducing HLS1 expression. Our results further reveal that the JA-activated transcription factor MYC2 represses EIN3 function to reduce HLS1 expression through at least the following two layers of regulation: (1) MYC2 binds to the promoter of an F-box gene, EIN3 BINDING F-BOX PROTEIN1, to induce its expression and thus promote EIN3 degradation; and (2) MYC2 physically interacts with EIN3 and inhibits its DNA binding activity. Collectively, our findings shed light on the molecular mechanism underlying the antagonism between JA and ET during apical hook development and provide insight into the coaction of multiple phytohormones in the regulation of plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Ciclopentanos/metabolismo , Etilenos/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Oxilipinas/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Unión al ADN , Regulación hacia Abajo , Ensayo de Cambio de Movilidad Electroforética , Proteínas Nucleares/metabolismo , Sondas de Oligonucleótidos , Unión Proteica , Proteolisis , Factores de Transcripción/metabolismo
6.
J Integr Plant Biol ; 58(7): 642-55, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26584710

RESUMEN

Flowering is a highly orchestrated and extremely critical process in a plant's life cycle. Previous study has demonstrated that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and FLOWERING LOCUS T (FT) integrate the gibberellic acid (GA) signaling pathway and vernalization pathway in regulating flowering time, but detailed molecular mechanisms remain largely unclear. In GA signaling pathway, DELLA proteins are a group of master transcriptional regulators, while in vernalization pathway FLOWERING LOCUS C (FLC) is a core transcriptional repressor that down-regulates the expression of SOC1 and FT. Here, we report that DELLA proteins interact with FLC in vitro and in vivo, and the LHRI domains of DELLAs and the C-terminus of MADS domain of FLC are required for these interactions. Phenotypic and gene expression analysis showed that mutation of FLC reduces while over-expression of FLC enhances the GA response in the flowering process. Further, DELLA-FLC interactions promote the repression ability of FLC on its target genes. In summary, these findings report that the interaction between MADS box transcription factor FLC and GRAS domain regulator DELLAs may integrate various signaling inputs in flowering time control, and shed new light on the regulatory mechanism both for FLC and DELLAs in regulating gene expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Proteínas de Dominio MADS/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Flores/efectos de los fármacos , Flores/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Giberelinas/farmacología , Proteínas de Dominio MADS/química , Modelos Biológicos , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Transcripción Genética/efectos de los fármacos
7.
Plant Physiol ; 162(1): 470-83, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23471133

RESUMEN

Paraquat is one of the most widely used herbicides worldwide. In green plants, paraquat targets the chloroplast by transferring electrons from photosystem I to molecular oxygen to generate toxic reactive oxygen species, which efficiently induce membrane damage and cell death. A number of paraquat-resistant biotypes of weeds and Arabidopsis (Arabidopsis thaliana) mutants have been identified. The herbicide resistance in Arabidopsis is partly attributed to a reduced uptake of paraquat through plasma membrane-localized transporters. However, the biochemical mechanism of paraquat resistance remains poorly understood. Here, we report the identification and characterization of an Arabidopsis paraquat resistant1 (par1) mutant that shows strong resistance to the herbicide without detectable developmental abnormalities. PAR1 encodes a putative l-type amino acid transporter protein localized to the Golgi apparatus. Compared with the wild-type plants, the par1 mutant plants show similar efficiency of paraquat uptake, suggesting that PAR1 is not directly responsible for the intercellular uptake of paraquat. However, the par1 mutation caused a reduction in the accumulation of paraquat in the chloroplast, suggesting that PAR1 is involved in the intracellular transport of paraquat into the chloroplast. We identified a PAR1-like gene, OsPAR1, in rice (Oryza sativa). Whereas the overexpression of OsPAR1 resulted in hypersensitivity to paraquat, the knockdown of its expression using RNA interference conferred paraquat resistance on the transgenic rice plants. These findings reveal a unique mechanism by which paraquat is actively transported into the chloroplast and also provide a practical approach for genetic manipulations of paraquat resistance in crops.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Cloroplastos/metabolismo , Aparato de Golgi/metabolismo , Herbicidas/metabolismo , Paraquat/metabolismo , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Transporte Biológico , Clorofila/metabolismo , Mapeo Cromosómico , Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Resistencia a los Herbicidas , Mutagénesis Insercional , Oryza/genética , Oryza/metabolismo , Fenotipo , Hojas de la Planta/citología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Plantones/citología , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo
8.
Plant Cell ; 23(11): 3944-60, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22108404

RESUMEN

The interactions between phytohormones are crucial for plants to adapt to complex environmental changes. One example is the ethylene-regulated local auxin biosynthesis in roots, which partly contributes to ethylene-directed root development and gravitropism. Using a chemical biology approach, we identified a small molecule, l-kynurenine (Kyn), which effectively inhibited ethylene responses in Arabidopsis thaliana root tissues. Kyn application repressed nuclear accumulation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Moreover, Kyn application decreased ethylene-induced auxin biosynthesis in roots, and TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1/TRYPTOPHAN AMINOTRANSFERASE RELATEDs (TAA1/TARs), the key enzymes in the indole-3-pyruvic acid pathway of auxin biosynthesis, were identified as the molecular targets of Kyn. Further biochemical and phenotypic analyses revealed that Kyn, being an alternate substrate, competitively inhibits TAA1/TAR activity, and Kyn treatment mimicked the loss of TAA1/TAR functions. Molecular modeling and sequence alignments suggested that Kyn effectively and selectively binds to the substrate pocket of TAA1/TAR proteins but not those of other families of aminotransferases. To elucidate the destabilizing effect of Kyn on EIN3, we further found that auxin enhanced EIN3 nuclear accumulation in an EIN3 BINDING F-BOX PROTEIN1 (EBF1)/EBF2-dependent manner, suggesting the existence of a positive feedback loop between auxin biosynthesis and ethylene signaling. Thus, our study not only reveals a new level of interactions between ethylene and auxin pathways but also offers an efficient method to explore and exploit TAA1/TAR-dependent auxin biosynthesis.


Asunto(s)
Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Quinurenina/farmacología , Raíces de Plantas/crecimiento & desarrollo , Triptófano-Transaminasa/antagonistas & inhibidores , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN , Inhibidores Enzimáticos/farmacología , Etilenos/farmacología , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/farmacología , Quinurenina/química , Quinurenina/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Bibliotecas de Moléculas Pequeñas , Factores de Transcripción/metabolismo , Triptófano-Transaminasa/genética , Triptófano-Transaminasa/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(30): 12539-44, 2011 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-21737749

RESUMEN

Jasmonate (JA) and ethylene (ET) are two major plant hormones that synergistically regulate plant development and tolerance to necrotrophic fungi. Both JA and ET induce the expression of several pathogenesis-related genes, while blocking either signaling pathway abolishes the induction of these genes by JA and ET alone or in combination. However, the molecular basis of JA/ET coaction and signaling interdependency is largely unknown. Here, we report that two Arabidopsis ET-stabilized transcription factors (EIN3 and EIL1) integrate ET and JA signaling in the regulation of gene expression, root development, and necrotrophic pathogen defense. Further studies reveal that JA enhances the transcriptional activity of EIN3/EIL1 by removal of JA-Zim domain (JAZ) proteins, which physically interact with and repress EIN3/EIL1. In addition, we find that JAZ proteins recruit an RPD3-type histone deacetylase (HDA6) as a corepressor that modulates histone acetylation, represses EIN3/EIL1-dependent transcription, and inhibits JA signaling. Our studies identify EIN3/EIL1 as a key integration node whose activation requires both JA and ET signaling, and illustrate transcriptional derepression as a common mechanism to integrate diverse signaling pathways in the regulation of plant development and defense.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Etilenos/metabolismo , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Secuencia de Bases , Botrytis/patogenicidad , ADN de Plantas/genética , Proteínas de Unión al ADN , Histona Desacetilasas/metabolismo , Modelos Biológicos , Proteínas Nucleares/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
10.
Plant Cell ; 22(7): 2384-401, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20647342

RESUMEN

Plant responses to ethylene are mediated by regulation of EBF1/2-dependent degradation of the ETHYLENE INSENSITIVE3 (EIN3) transcription factor. Here, we report that the level of EIL1 protein is upregulated by ethylene through an EBF1/2-dependent pathway. Genetic analysis revealed that EIL1 and EIN3 cooperatively but differentially regulate a wide array of ethylene responses, with EIL1 mainly inhibiting leaf expansion and stem elongation in adult plants and EIN3 largely regulating a multitude of ethylene responses in seedlings. When EBF1 and EBF2 are disrupted, EIL1 and EIN3 constitutively accumulate in the nucleus and remain unresponsive to exogenous ethylene application. Further study revealed that the levels of EBF1 and EBF2 proteins are downregulated by ethylene and upregulated by silver ion and MG132, suggesting that ethylene stabilizes EIN3/EIL1 by promoting EBF1 and EBF2 proteasomal degradation. Also, we found that EIN2 is indispensable for mediating ethylene-induced EIN3/EIL1 accumulation and EBF1/2 degradation, whereas MKK9 is not required for ethylene signal transduction, contrary to a previous report. Together, our studies demonstrate that ethylene similarly regulates EIN3 and EIL1, the two master transcription factors coordinating myriad ethylene responses, and clarify that EIN2 but not MKK9 is required for ethylene-induced EIN3/EIL1 stabilization. Our results also reveal that EBF1 and EBF2 act as essential ethylene signal transducers that by themselves are subject to proteasomal degradation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN , Regulación hacia Abajo , Hidrólisis , Mutación , Proteínas Nucleares/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Factores de Transcripción/genética
11.
Proc Natl Acad Sci U S A ; 106(50): 21431-6, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19948955

RESUMEN

The ability to switch from skotomorphogenesis to photomorphogenesis is essential for seedling development and plant survival. Recent studies revealed that COP1 and phytochrome-interacting factors (PIFs) are key regulators of this transition by repressing the photomorphogenic responses and/or maintaining the skotomorphogenic state of etiolated seedlings. Here we report that the plant hormone ethylene plays a crucial role in the transition from skotomorphogenesis to photomorphogenesis by facilitating greening of etiolated seedlings upon light irradiation. Activation of EIN3/EIL1 is both necessary and sufficient for ethylene-induced enhancement of seedling greening, as well as repression of the accumulation of protochlorophyllide, a phototoxic intermediate of chlorophyll synthesis. EIN3/EIL1 were found to induce gene expression of two key enzymes in the chlorophyll synthesis pathway, protochlorophyllide oxidoreductase A and B (PORA/B). ChIP and EMSA assays demonstrated that EIN3 directly binds to the specific elements present in the PORA and PORB promoters. Genetic studies revealed that EIN3/EIL1 function in cooperation with PIF1 in preventing photo-oxidative damage and promoting cotyledon greening. Moreover, activation of EIN3 reverses the blockage of greening triggered by cop1 mutation or far-red light irradiation. Consistently, EIN3 acts downstream of COP1 and its protein accumulation is enhanced by COP1 but decreased by light. Taken together, EIN3/EIL1 represent a new class of transcriptional regulators along with PIF1 to optimize de-etiolation of Arabidopsis seedlings. Our study highlights the essential role of ethylene in enhancing seedling development and survival through protecting etiolated seedlings against photo-oxidative damage.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Clorofila/biosíntesis , Proteínas Nucleares/fisiología , Plantones/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis , Proteínas de Unión al ADN , Luz , Oxidación-Reducción , Fotosíntesis , Plantones/efectos de la radiación
12.
Sci Adv ; 8(36): eabn5057, 2022 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-36083905

RESUMEN

Cytokinin plays critical roles in root development. Cytokinin signaling depends on activation of key transcription factors known as type B Arabidopsis response regulators (ARRs). However, the mechanisms underlying the finely tuned regulation of type B ARR activity remain unclear. In this study, we demonstrate that the ERF-associated amphiphilic repression (EAR) motif-containing protein TCP interactor containing ear motif protein2 (TIE2) forms a negative feedback loop to finely tune the activity of type B ARRs during root development. Disruption of TIE2 and its close homolog TIE1 causes severely shortened roots. TIE2 interacts with type B ARR1 and represses transcription of ARR1 targets. The cytokinin response is correspondingly enhanced in tie1-1 tie2-1. We further show that ARR1 positively regulates TIE1 and TIE2 by directly binding to their promoters. Our findings demonstrate that TIEs play key roles in controlling plant development and reveal an important negative feedback regulation mechanism for cytokinin signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
iScience ; 15: 611-622, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31078552

RESUMEN

Plants display thermomorphogenesis in response to high temperature (HT). PHYTOCHROME INTERACTING FACTOR 4 (PIF4) is a central integrator regulated by numerous negative regulators. However, the mechanisms underpinning PIF4 positive regulation are largely unknown. Here, we find that TEOSINTE BRANCHED 1/CYCLOIDEA/PCF 5 (TCP5), TCP13, and TCP17 transcription factors promote the activity of PIF4 at transcriptional and post-transcriptional levels. TCP5 is rapidly induced by HT treatment, and TCP5 protein stability increases under HT. The overexpression of TCP5 causes constitutive thermomorphogenic phenotypes, whereas the tcp5 tcp13 tcp17 triple mutant exhibits aberrant thermomorphogenesis. We demonstrate that TCP5 not only physically interacts with PIF4 to enhance its activity but also directly binds to the promoter of PIF4 to increase its transcript. TCP5 and PIF4 share common downstream targets. The tcp5 tcp13 tcp17 mutant partially restores the long hypocotyls caused by PIF4 overexpression. Our findings provide a layer of understanding about the fine-scale regulation of PIF4 and plant thermomorphogenesis.

14.
Yi Chuan Xue Bao ; 32(10): 1082-8, 2005 Oct.
Artículo en Zh | MEDLINE | ID: mdl-16252704

RESUMEN

Using an estrogen-inducible expression XVE (LexA-VP16-Estragon Receptor) system, we have generated approximately 40 000 independent T-DNA insertion lines of Arabidopsis thaliana. Segregation analyses of about 18000 lines indicated that 51.6% of them contain single T-DNA insertions and that the average insertion number is 1.38 copies per line. Mutants displaying a variety of morphological alterations were identified, including those that affect development of roots,hypocotyls, leaves, floral organs and seeds as well as the flowering time.


Asunto(s)
Arabidopsis/genética , ADN Bacteriano/genética , Mutagénesis Insercional/métodos , Plantas Modificadas Genéticamente/genética , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Clonación Molecular , Estrógenos/farmacología , Vectores Genéticos/genética , Proteína Vmw65 de Virus del Herpes Simple/genética , Mutagénesis Insercional/efectos de los fármacos , Fenotipo , Plantas Modificadas Genéticamente/anatomía & histología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plásmidos/genética , Receptores de Estrógenos/genética , Serina Endopeptidasas/genética , Activación Transcripcional/efectos de los fármacos
15.
Mol Plant ; 6(5): 1661-72, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23658065

RESUMEN

In plants, the cytokinin metabolic processes, including cytokinin biosynthesis, interconversion, inactivation, and degradation, play critical roles in the regulation of cytokinin homeostasis and plant development. Purine metabolic enzymes have been implied to catalyze the cytokinin interconversion in previous works. In this study, we report that Adenine Phosphoribosyl Transferase 1 (APT1) is the causal gene of the high-dose cytokinin-resistant mutants. APT1 catalyzes the cytokinin conversion from free bases to nucleotides, and is functionally predominant among the five members of the Arabidopsis Adenine Phosphoribosyl Transferase family. Loss of APT1 activity in plants leads to excess accumulation of cytokinin bases, thus evoking myriad cytokinin-regulated responses, such as delayed leaf senescence, anthocyanin accumulation, and downstream gene expression. Thus, our study defines APT1 as a key metabolic enzyme participating in the cytokinin inactivation by phosphoribosylation.


Asunto(s)
Adenina Fosforribosiltransferasa/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Biocatálisis , Nucleósidos/metabolismo , Nucleótidos/metabolismo , Adenina Fosforribosiltransferasa/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biocatálisis/efectos de los fármacos , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Modelos Biológicos , Proteínas Mutantes/metabolismo , Mutación/genética , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Plantas Modificadas Genéticamente
16.
Cell Res ; 22(5): 915-27, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22349459

RESUMEN

Dark-grown Arabidopsis seedlings develop an apical hook when germinating in soil, which protects the cotyledons and apical meristematic tissues when protruding through the soil. Several hormones are reported to distinctly modulate this process. Previous studies have shown that ethylene and gibberellins (GAs) coordinately regulate the hook development, although the underlying molecular mechanism is largely unknown. Here we showed that GA(3) enhanced while paclobutrazol repressed ethylene- and EIN3-overexpression (EIN3ox)-induced hook curvature, and della mutant exhibited exaggerated hook curvature, which required an intact ethylene signaling pathway. Genetic study revealed that GA-enhanced hook development was dependent on HOOKLESS 1 (HLS1), a central regulator mediating the input of the multiple signaling pathways during apical hook development. We further found that GA(3) induced (and DELLA proteins repressed) HLS1 expression in an ETHYLENE INSENSITIVE 3/EIN3-LIKE 1 (EIN3/EIL1)-dependent manner, whereby EIN3/EIL1 activated HLS1 transcription by directly binding to its promoter. Additionally, DELLA proteins were found to interact with the DNA-binding domains of EIN3/EIL1 and repress EIN3/EIL1-regulated HLS1 expression. Treatment with naphthylphthalamic acid, a polar auxin transport inhibitor, repressed the constitutively exaggerated hook curvature of EIN3ox line and della mutant, supporting that auxin functions downstream of the ethylene and GA pathways in hook development. Taken together, our results identify EIN3/EIL1 as a new class of DELLA-associated transcription factors and demonstrate that GA promotes apical hook formation in cooperation with ethylene partly by inducing the expression of HLS1 via derepression of EIN3/EIL1 functions.


Asunto(s)
Arabidopsis/metabolismo , Etilenos/farmacología , Giberelinas/farmacología , Plantones/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Proteínas de Unión al ADN , Mutación , Proteínas Nucleares/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Regiones Promotoras Genéticas , Plantones/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Transcripción Genética
17.
Cell Res ; 19(12): 1377-87, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19806166

RESUMEN

Metabolism of S-nitrosoglutathione (GSNO), a major biologically active nitric oxide (NO) species, is catalyzed by the evolutionally conserved GSNO reductase (GSNOR). Previous studies showed that the Arabidopsis GSNOR1/HOT5 gene regulates salicylic acid signaling and thermotolerance by modulating the intracellular S-nitrosothiol level. Here, we report the characterization of the Arabidopsis paraquat resistant2-1 (par2-1) mutant that shows an anti-cell death phenotype. The production of superoxide in par2-1 is comparable to that of wild-type plants when treated by paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride), suggesting that PAR2 acts downstream of superoxide to regulate cell death. PAR2, identified by positional cloning, is shown to be identical to GSNOR1/HOT5. The par2-1 mutant carries a missense mutation in a highly conserved glycine, which renders the mutant protein unstable. Compared to wild type, par2-1 mutant has a higher NO level, as revealed by staining with 4,5-diaminofluorescein diacetate. Consistent with this result, wild-type plants treated with an NO donor display resistance to paraquat. Interestingly, the GSNOR1/HOT5/PAR2 protein level, other than its steady-state mRNA level, is induced by paraquat, but is reduced by NO donors. Taken together, these results suggest that GSNOR1/HOT5/PAR2 plays an important role in regulating cell death in plant cells through modulating intracellular NO level.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Secuencia de Aminoácidos/genética , Muerte Celular/genética , Regulación Enzimológica de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Glicina/genética , Herbicidas/farmacología , Mutación Missense/genética , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Paraquat/farmacología
19.
Plant Physiol ; 140(4): 1345-54, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16489134

RESUMEN

Iron is an essential element for almost all living organisms, actively involved in a variety of cellular activities. To acquire iron from soil, strategy I plants such as Arabidopsis (Arabidopsis thaliana) must first reduce ferric to ferrous iron by Fe(III)-chelate reductases (FROs). FRO genes display distinctive expression patterns in several plant species. However, regulation of FRO genes is not well understood. Here, we report a systematic characterization of the AtFRO6 expression during plant growth and development. AtFRO6, encoding a putative FRO, is specifically expressed in green-aerial tissues in a light-dependent manner. Analysis of mutant promoter-beta-glucuronidase reporter genes in transgenic Arabidopsis plants revealed the presence of multiple light-responsive elements in the AtFRO6 promoter. These light-responsive elements may act synergistically to confer light responsiveness to the AtFRO6 promoter. Moreover, no AtFRO6 expression was detected in dedifferentiated green calli of the korrigan1-2 (kor1-2) mutant or undifferentiated calli derived from wild-type explants. Conversely, AtFRO6 is expressed in redifferentiated kor1-2 shoot-like structures and differentiating calli of wild-type explants. In addition, AtFRO7, but not AtFRO5 and AtFRO8, also shows a reduced expression level in kor1-2 green calli. These results suggest that whereas photosynthesis is necessary but not sufficient, both light and cell differentiation are necessary for AtFRO6 expression. We propose that AtFRO6 expression is light regulated in a tissue- or cell differentiation-specific manner to facilitate the acquisition of iron in response to distinctive developmental cues.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , FMN Reductasa/genética , Regulación de la Expresión Génica de las Plantas , Luz , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Diferenciación Celular , FMN Reductasa/química , FMN Reductasa/metabolismo , Genes Reporteros , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Fotosíntesis , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína
20.
Proc Natl Acad Sci U S A ; 103(36): 13286-93, 2006 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16920797

RESUMEN

Ethylene is a gaseous plant growth regulator that controls a multitude of developmental and stress responses. Recently, the levels of Arabidopsis EIN3 protein, a key transcription factor mediating ethylene-regulated gene expression, have been demonstrated to increase in response to the presence of ethylene gas. Furthermore, in the absence of ethylene, EIN3 is quickly degraded through a ubiquitin/proteasome pathway mediated by two F-box proteins, EBF1 and EBF2. Here we report the identification of ETHYLENE-INSENSITIVE5 as the 5'-->3' exoribonuclease XRN4. Specifically, we demonstrate that EIN5 is a component of the ethylene signal transduction cascade acting downstream of CTR1 that is required for ethylene-mediated gene expression changes. Furthermore, we find that the ethylene insensitivity of ein5 mutant plants is a consequence of the over-accumulation of EBF1 and EBF2 mRNAs resulting in the under-accumulation of EIN3 even in the presence of ethylene gas. Together, our results suggest that the role of EIN5 in ethylene perception is to antagonize the negative feedback regulation on EIN3 by promoting EBF1 and EBF2 mRNA decay, which consequently allows the accumulation of EIN3 protein to trigger the ethylene response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Etilenos/metabolismo , Exorribonucleasas/metabolismo , Proteínas F-Box/metabolismo , Proteínas de Plantas/metabolismo , Alelos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cromosomas de las Plantas , Proteínas de Unión al ADN , Exorribonucleasas/química , Exorribonucleasas/genética , Proteínas F-Box/genética , Retroalimentación Fisiológica , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares , Filogenia , Mapeo Físico de Cromosoma , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantones/genética , Plantones/crecimiento & desarrollo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA