Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 610(7931): 327-334, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36171283

RESUMEN

Recent studies suggested that microglia, the primary brain immune cells, can affect circuit connectivity and neuronal function1,2. Microglia infiltrate the neuroepithelium early in embryonic development and are maintained in the brain throughout adulthood3,4. Several maternal environmental factors-such as an aberrant microbiome, immune activation and poor nutrition-can influence prenatal brain development5,6. Nevertheless, it is unknown how changes in the prenatal environment instruct the developmental trajectory of infiltrating microglia, which in turn affect brain development and function. Here we show that, after maternal immune activation (MIA) in mice, microglia from the offspring have a long-lived decrease in immune reactivity (blunting) across the developmental trajectory. The blunted immune response was accompanied by changes in chromatin accessibility and reduced transcription factor occupancy of the open chromatin. Single-cell RNA-sequencing analysis revealed that MIA does not induce a distinct subpopulation but, rather, decreases the contribution to inflammatory microglia states. Prenatal replacement of microglia from MIA offspring with physiological infiltration of naive microglia ameliorated the immune blunting and restored a decrease in presynaptic vesicle release probability onto dopamine receptor type-two medium spiny neurons, indicating that aberrantly formed microglia due to an adverse prenatal environment affect the long-term microglia reactivity and proper striatal circuit development.


Asunto(s)
Inflamación , Microglía , Madres , Vías Nerviosas , Efectos Tardíos de la Exposición Prenatal , Animales , Cromatina/genética , Cromatina/metabolismo , Femenino , Inflamación/inmunología , Inflamación/patología , Ratones , Microglía/inmunología , Microglía/patología , Neostriado/citología , Vías Nerviosas/patología , Neuronas/patología , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/inmunología , RNA-Seq , Receptores Dopaminérgicos/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
2.
J Neurosci ; 32(9): 3081-7, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22378880

RESUMEN

Activated microglia and reactive astrocytes are commonly found in and around the senile plaque, which is the central pathological hallmark of Alzheimer's disease. Astrocytes respond to neuronal activity through the release of gliotransmitters such as glutamate, D-serine, and ATP. However, it is largely unknown whether and how gliotransmitters affect neuronal functions. In this study, we explored the effect of a gliotransmitter, ATP, on neurons damaged by ß-amyloid peptide (Aß). We found that Aß(1-42) (Aß42) increased the release of ATP in cultures of primary astrocytes and U373 astrocyte cell line. We also found that exogenous ATP protected Aß42-mediated reduction in synaptic molecules, such as NMDA receptor 2A and PSD-95, through P2 purinergic receptors and prevented Aß42-induced spine reduction in cultured primary hippocampal neurons. Moreover, ATP prevented Aß42-induced impairment of long-term potentiation in acute hippocampal slices. Our findings suggest that Aß-induced release of gliotransmitter ATP plays a protective role against Aß42-mediated disruption of synaptic plasticity.


Asunto(s)
Adenosina Trifosfato/metabolismo , Péptidos beta-Amiloides/toxicidad , Astrocitos/metabolismo , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/toxicidad , Sinapsis/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Animales , Animales Recién Nacidos , Línea Celular Tumoral , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Fragmentos de Péptidos/antagonistas & inhibidores , Ratas Sprague-Dawley , Sinapsis/efectos de los fármacos
3.
J Neurosci ; 32(16): 5678-5687, 2012 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-22514329

RESUMEN

MicroRNAs (miRNAs) have recently come to be viewed as critical players that modulate a number of cellular features in various biological systems including the mature CNS by exerting regulatory control over the stability and translation of mRNAs. Despite considerable evidence for the regulatory functions of miRNAs, the identities of the miRNA species that are involved in the regulation of synaptic transmission and plasticity and the mechanisms by which these miRNAs exert functional roles remain largely unknown. In the present study, the expression of microRNA-188 (miR-188) was found to be upregulated by the induction of long-term potentiation (LTP). The protein level of neuropilin-2 (Nrp-2), one of the possible molecular targets for miR-188, was decreased during LTP induction. We also confirmed that the luciferase activity of the 3'-UTR of Nrp-2 was diminished by treatment with a miR-188 oligonucleotide but not with a scrambled miRNA oligonucleotide. Nrp-2 serves as a receptor for semaphorin 3F, which is a negative regulator of spine development and synaptic structure. In addition, miR-188 specifically rescued the reduction in dendritic spine density induced by Nrp-2 expression in hippocampal neurons from rat primary culture. Furthermore, miR-188 counteracted the decrease in the miniature EPSC frequency induced by Nrp-2 expression in hippocampal neurons from rat primary culture. These findings suggest that miR-188 serves to fine-tune synaptic plasticity by regulating Nrp-2 expression.


Asunto(s)
Dendritas/fisiología , Regulación hacia Abajo/fisiología , MicroARNs/metabolismo , Plasticidad Neuronal/fisiología , Neuropilina-2/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Células Cultivadas , Espinas Dendríticas/metabolismo , Regulación hacia Abajo/genética , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Antagonistas del GABA/farmacología , Perfilación de la Expresión Génica , Glicina/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Humanos , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Plasticidad Neuronal/genética , Neuronas/citología , Neuropilina-2/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Técnicas de Placa-Clamp , Picrotoxina/farmacología , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Estricnina/farmacología , Sinapsis/genética , Transmisión Sináptica/genética , Transfección
4.
Proc Natl Acad Sci U S A ; 107(10): 4710-5, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20176955

RESUMEN

Despite considerable evidence for a critical role of neuroligin-1 in the specification of excitatory synapses, the cellular mechanisms and physiological roles of neuroligin-1 in mature neural circuits are poorly understood. In mutant mice deficient in neuroligin-1, or adult rats in which neuroligin-1 was depleted, we have found that neuroligin-1 stabilizes the NMDA receptors residing in the postsynaptic membrane of amygdala principal neurons, which allows for a normal range of NMDA receptor-mediated synaptic transmission. We observed marked decreases in NMDA receptor-mediated synaptic currents at afferent inputs to the amygdala of neuroligin-1 knockout mice. However, the knockout mice exhibited a significant impairment in spike-timing-dependent long-term potentiation (STD-LTP) at the thalamic but not the cortical inputs to the amygdala. Subsequent electrophysiological analyses indicated that STD-LTP in the cortical pathway is largely independent of activation of postsynaptic NMDA receptors. These findings suggest that neuroligin-1 can modulate, in a pathway-specific manner, synaptic plasticity in the amygdala circuits of adult animals, likely by regulating the abundance of postsynaptic NMDA receptors.


Asunto(s)
Amígdala del Cerebelo/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Transmisión Sináptica/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Potenciales de Acción , Amígdala del Cerebelo/metabolismo , Animales , Western Blotting , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular , Maleato de Dizocilpina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores , Humanos , Potenciación a Largo Plazo , Ratones , Ratones Noqueados , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Tálamo/metabolismo , Tálamo/fisiología
5.
Am J Psychiatry ; 180(4): 305-317, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36128683

RESUMEN

OBJECTIVE: Deficits in social cognition consistently underlie functional disabilities in a wide range of psychiatric disorders. Neuroimaging studies have suggested that the anterior insula is a "common core" brain region that is impaired across neurological and psychiatric disorders, which include social cognition deficits. Nevertheless, neurobiological mechanisms of the anterior insula for social cognition remain elusive. This study aims to fill this knowledge gap. METHODS: To determine the role of the anterior insula in social cognition, the authors manipulated expression of Cyp26B1, an anterior insula-enriched molecule that is crucial for retinoic acid degradation and is involved in the pathology of neuropsychiatric conditions. Social cognition was mainly assayed using the three-chamber social interaction test. Multimodal analyses were conducted at the molecular, cellular, circuitry, and behavioral levels. RESULTS: At the molecular and cellular level, anterior insula-mediated social novelty recognition is maintained by proper activity of the layer 5 pyramidal neurons, for which retinoic acid-mediated gene transcription can play a role. The authors also demonstrate that oxytocin influences the anterior insula-mediated social novelty recognition, although not by direct projection of oxytocin neurons, nor by direct diffusion of oxytocin to the anterior insula, which contrasts with the modes of oxytocin regulation onto the posterior insula. Instead, oxytocin affects oxytocin receptor-expressing neurons in the dorsal raphe nucleus, where serotonergic neurons are projected to the anterior insula. Furthermore, the authors show that serotonin 5-HT2C receptor expressed in the anterior insula influences social novelty recognition. CONCLUSIONS: The anterior insula plays a pivotal role in social novelty recognition that is partly regulated by a local retinoic acid cascade but also remotely regulated by oxytocin via a long-range circuit mechanism.


Asunto(s)
Oxitocina , Conducta Social , Humanos , Oxitocina/metabolismo , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo
6.
Sci Rep ; 6: 34433, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708404

RESUMEN

MicroRNAs have emerged as key factors in development, neurogenesis and synaptic functions in the central nervous system. In the present study, we investigated a pathophysiological significance of microRNA-188-5p (miR-188-5p) in Alzheimer's disease (AD). We found that oligomeric Aß1-42 treatment diminished miR-188-5p expression in primary hippocampal neuron cultures and that miR-188-5p rescued the Aß1-42-mediated synapse elimination and synaptic dysfunctions. Moreover, the impairments in cognitive function and synaptic transmission observed in 7-month-old five familial AD (5XFAD) transgenic mice, were ameliorated via viral-mediated expression of miR-188-5p. miR-188-5p expression was down-regulated in the brain tissues from AD patients and 5XFAD mice. The addition of miR-188-5p rescued the reduction in dendritic spine density in the primary hippocampal neurons treated with oligomeric Aß1-42 and cultured from 5XFAD mice. The reduction in the frequency of mEPSCs was also restored by addition of miR-188-5p. The impairments in basal fEPSPs and cognition observed in 7-month-old 5XFAD mice were ameliorated via the viral-mediated expression of miR-188-5p in the hippocampus. Furthermore, we found that miR-188 expression is CREB-dependent. Taken together, our results suggest that dysregulation of miR-188-5p expression contributes to the pathogenesis of AD by inducing synaptic dysfunction and cognitive deficits associated with Aß-mediated pathophysiology in the disease.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Disfunción Cognitiva , Hipocampo , MicroARNs , Fragmentos de Péptidos , Sinapsis , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/biosíntesis , Péptidos beta-Amiloides/genética , Animales , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Disfunción Cognitiva/terapia , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Ratones , Ratones Transgénicos , MicroARNs/biosíntesis , MicroARNs/genética , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/genética , Sinapsis/genética , Sinapsis/metabolismo , Sinapsis/patología
7.
Mol Brain ; 6: 47, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24284042

RESUMEN

BACKGROUND: Exosomes, small extracellular vesicles of endosomal origin, have been suggested to be involved in both the metabolism and aggregation of Alzheimer's disease (AD)-associated amyloid ß-protein (Aß). Despite their ubiquitous presence and the inclusion of components which can potentially interact with Aß, the role of exosomes in regulating synaptic dysfunction induced by Aß has not been explored. RESULTS: We here provide in vivo evidence that exosomes derived from N2a cells or human cerebrospinal fluid can abrogate the synaptic-plasticity-disrupting activity of both synthetic and AD brain-derived Aß. Mechanistically, this effect involves sequestration of synaptotoxic Aß assemblies by exosomal surface proteins such as PrPC rather than Aß proteolysis. CONCLUSIONS: These data suggest that exosomes can counteract the inhibitory action of Aß, which contributes to perpetual capability for synaptic plasticity.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Exosomas/metabolismo , Plasticidad Neuronal , Sinapsis/metabolismo , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Líquido Cefalorraquídeo/metabolismo , Difusión , Exosomas/efectos de los fármacos , Femenino , Humanos , Ligandos , Potenciación a Largo Plazo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Proteínas PrPC/metabolismo , Ratas , Ratas Wistar , Sinapsis/efectos de los fármacos
8.
Mol Brain ; 5: 40, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-23111145

RESUMEN

BACKGROUND: Notch signaling is well recognized as a key regulator of the neuronal fate during embryonic development, but its function in the adult brain is still largely unknown. Mind bomb-1 (Mib1) is an essential positive regulator in the Notch pathway, acting non-autonomously in the signal-sending cells. Therefore, genetic ablation of Mib1 in mature neuron would give valuable insight to understand the cell-to-cell interaction between neurons via Notch signaling for their proper function. RESULTS: Here we show that the inactivation of Mib1 in mature neurons in forebrain results in impaired hippocampal dependent spatial memory and contextual fear memory. Consistently, hippocampal slices from Mib1-deficient mice show impaired late-phase, but not early-phase, long-term potentiation and long-term depression without change in basal synaptic transmission at SC-CA1 synapses. CONCLUSIONS: These data suggest that Mib1-mediated Notch signaling is essential for long-lasting synaptic plasticity and memory formation in the rodent hippocampus.


Asunto(s)
Memoria a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Receptores Notch/metabolismo , Transducción de Señal , Sinapsis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Envejecimiento/metabolismo , Animales , Hipocampo/anatomía & histología , Hipocampo/enzimología , Potenciación a Largo Plazo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fenotipo , Proteína Quinasa C/metabolismo , Estructura Terciaria de Proteína , Receptores Notch/química
9.
Mol Cells ; 32(2): 197-201, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21638202

RESUMEN

Various animal models of Alzheimer disease (AD) are characterized by deficits in spatial memory that are causally related to altered synaptic function and impairment of long-term potentiation (LTP) in the hippocampus. In Tg2576 AD mice, we compared LTP in 2 major hippocampal pathways, Schaffer collateral (SC) and mossy fiber (MF) pathways. Whereas LTP was completely abolished in the SC pathway of Tg2576 mice, we found no decrease in LTP induced by stimulation of the MF pathway. In fact, we found that in the MF pathway, LTP was slightly, but significantly, enhanced compared with that in the MF pathway of WT littermates. This pathway-specific impairment of LTP is not attributable to alterations in transmitter release, as indicated by an unaltered paired-pulse ratio. These results suggest that the spatial memory deficits normally seen in AD models arise primarily from LTP impairment at the SC pathway.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Precursor de Proteína beta-Amiloide/genética , Memoria , Fibras Musgosas del Hipocampo/metabolismo , Plasticidad Neuronal , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Modelos Animales de Enfermedad , Humanos , Potenciación a Largo Plazo/genética , Memoria/fisiología , Trastornos de la Memoria/genética , Ratones , Ratones Transgénicos , Fibras Musgosas del Hipocampo/patología , Mutación/genética , Vías Nerviosas/fisiología , Plasticidad Neuronal/genética , Transmisión Sináptica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA