Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(29): 10652-10661, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37458075

RESUMEN

Solar-driven interfacial evaporation technology utilizes materials to form a thin layer on the water's surface, absorbs sunlight on this layer, completes the light-to-heat conversion, heats up the water, and vaporizes it. This greatly reduces energy loss to bulk water and greatly improves the evaporation rate for producing clean water. Additionally, three-dimensional (3D) evaporators are increasingly being applied in this field, and the cold surface generated by the rapid evaporation in the 3D evaporator can utilize environmental heat to achieve a net energy gain for the system. Both strategies improve the evaporation rate of the system, but 3D materials typically have high water contents and cannot avoid energy flow into non-evaporated water. To address this, we introduce the advantages of interfacial evaporation into 3D evaporation by constructing an evaporator with a highly conductive copper core skeleton and an outer layer of ultrathin water and by reasonably constructing interconnected evaporation frameworks. Investigating and optimizing the mutual influence of the ultrathin water layer on the framework, an evaporator with 40 pores per inch (ppi) can reach a maximum of 24.4 kg·m-2 h-1, indicating that 3D interfacial evaporators with ultrathin water layers concentrate energy flow to stimulate high evaporation rates. This strategy will promote the development of photothermal evaporation technology.


Asunto(s)
Cobre , Luz Solar , Fenómenos Físicos , Bosques , Agua
2.
Environ Sci Technol ; 56(13): 9797-9805, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35748330

RESUMEN

Solar-driven interfacial evaporation (SIE) is emerging as an energy-efficient technology to alleviate the global water shortages. However, there is a fatal disadvantage in using SIE, that is, the volatile organic compounds (VOCs) widely present in feedwater would concurrently evaporate and transport in distilled water, which threatens the water safety. Photocatalysis is a sustainable technology for pollution control, and after years of development, it has become a mature method. Considering the restriction by the insufficient reaction of the permeating VOCs on the two-dimensional (2D) light-available interface of conventional materials, a 3D photocatalytic approach can be established to boost VOC rejection for photothermal evaporation. In the present work, a light-permeable solar evaporator with 3D photocatalytic sites is constructed by a porous sponge decorated with BiOBrI nanosheets with oxygen-rich vacancies. The 3D microchannels in the evaporator provide a light-permeable path with the deepest irradiation depth of about 580 µm, and the reactive interface is increased by tens of times compared with the traditional 2D membrane, resulting in suppression of VOC remnants in distilled water by around four orders of magnitude. When evaporating river water containing 5 mg L-1 extra added phenol, no phenol residues (below 0.001 mg/L) were detected in the produced freshwater. This development is believed to provide a powerful strategy to resolve the VOC bottleneck of SIE.


Asunto(s)
Compuestos Orgánicos Volátiles , Purificación del Agua , Membranas , Luz Solar , Agua/química , Purificación del Agua/métodos
3.
Environ Sci Technol ; 55(16): 11308-11317, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34319084

RESUMEN

Membrane distillation (MD) is a promising technology for treating the concentrated seawater discharged from the desalination process. Interconnected porous membranes, fabricated by additive manufacturing, have received significant attention for MD technology because of their excellent permeability. However, their poor hydrophobic durability induced by the deformation of pores constrains their water desalination performance. Herein, an in situ three-dimensional (3D) welding approach involving emulsion electrospinning is reported for fabricating robust nanofibrous membranes. The reported method is simple and effective for welding nanofibers at their intersections, and the reinforced membrane pores are uniform in the 3D space. The results show that the in situ 3D welded nanofibrous membrane, with a stability of 170 h and water recovery of 76.9%, exhibits better desalination performance than the nonwelded (superhydrophobic) nanofibrous membrane and the postwelded (superhydrophobic) nanofibrous membrane. Furthermore, the stability mechanism of the in situ 3D welded nanofibrous membrane and the two different wetting mechanisms of the nonwelded and postwelded nanofibrous membranes were investigated in the current work. More significantly, the in situ 3D welded nanofibrous membrane can further concentrate the actual concentrated seawater (121°E, 37°N) to crystallization, demonstrating its potential applications for the desalination of challenging concentrated seawater.


Asunto(s)
Nanofibras , Soldadura , Destilación , Membranas Artificiales , Agua de Mar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA