Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Dairy Sci ; 106(1): 769-782, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36400613

RESUMEN

Aberrant epigenetic nuclear reprogramming, especially imprinting pattern disorders, is one of the major causes of failure of clone development from somatic cell nuclear transfer (SCNT). Previous studies showed that ZFP57 is a key protein required for imprint maintenance after fertilization. In this study, we found that imprinting control regions in several imprinted genes were significantly hypomethylated in cloned embryos compared with in vitro fertilization embryos, indicating a loss of imprinted gene methylation. The ZFP57 expression was capable of maintaining the correct degree of methylation at several imprinting control regions and correcting abnormal hypomethylation. Moreover, we successfully obtained bovine fetal fibroblasts overexpressing ZFP57, which were used as donors for SCNT. Our results demonstrated that overexpression of ZFP57 increased total and trophectoderm cell numbers and the ratio of inner cell mass to total cells, reduced the apoptosis rate and significantly enhanced the development of SCNT blastocysts in vitro, ultimately achieving a degree of methylation similar to that in in vitro fertilization embryos. We concluded that overexpression of ZFP57 in donor cells provided an effective method for enhancing nuclear reprogramming and developmental potential in SCNT embryos. The ZFP57 protein played a key role in maintaining the methylation of imprinted genes during early embryonic development, which may be effective for enhanced SCNT in cattle.


Asunto(s)
Metilación de ADN , Técnicas de Transferencia Nuclear , Embarazo , Femenino , Bovinos , Animales , Técnicas de Transferencia Nuclear/veterinaria , Desarrollo Embrionario , Blastocisto/metabolismo , Fertilización In Vitro/veterinaria
2.
Development ; 145(4)2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29453221

RESUMEN

Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.


Asunto(s)
Reprogramación Celular/genética , Desarrollo Embrionario/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Animales , Western Blotting , Bovinos , Embrión de Mamíferos/metabolismo , Epigenómica , Fertilización In Vitro , Técnica del Anticuerpo Fluorescente , Técnicas de Transferencia Nuclear , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
FASEB J ; 33(3): 4638-4652, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30673507

RESUMEN

Aberrant epigenetic reprogramming is a major factor of developmental failure of cloned embryos. Histone H3 lysine 27 trimethylation (H3K27me3), a histone mark for transcriptional repression, plays important roles in mammalian embryonic development and induced pluripotent stem cell (iPSC) generation. The global loss of H3K27me3 marks may facilitate iPSC generation in mice and humans. However, the H3K27me3 level and its role in bovine somatic cell nuclear transfer (SCNT) reprogramming remain poorly understood. Here, we show that SCNT embryos exhibit global H3K27me3 hypermethylation from the 2- to 8-cell stage and that its removal by ectopically expressed H3K27me3 lysine demethylase (KDM)6A greatly improves nuclear reprogramming efficiency. In contrast, H3K27me3 reduction by H3K27me3 methylase enhancer of zeste 2 polycomb repressive complex knockdown or donor cell treatment with the enhancer of zeste 2 polycomb repressive complex-selective inhibitor GSK343 suppressed blastocyst formation by SCNT embryos. KDM6A overexpression enhanced the transcription of genes involved in cell adhesion and cellular metabolism and X-linked genes. Furthermore, we identified methyl-CpG-binding domain protein 3-like 2, which was reactivated by KDM6A, as a factor that is required for effective reprogramming in bovines. These results show that H3K27me3 functions as an epigenetic barrier and that KDM6A overexpression improves SCNT efficiency by facilitating transcriptional reprogramming.-Zhou, C., Wang, Y., Zhang, J., Su, J., An, Q., Liu, X., Zhang, M., Wang, Y., Liu, J., Zhang, Y. H3K27me3 is an epigenetic barrier while KDM6A overexpression improves nuclear reprogramming efficiency.


Asunto(s)
Bovinos/embriología , Reprogramación Celular/genética , Código de Histonas/genética , Histona Demetilasas/fisiología , Histonas/genética , Técnicas de Transferencia Nuclear , Animales , Blastómeros/metabolismo , Bovinos/genética , Clonación de Organismos , Desarrollo Embrionario/efectos de los fármacos , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Histona Demetilasas/biosíntesis , Histona Demetilasas/genética , Histonas/metabolismo , Metilación , Microinyecciones , Mórula/citología , Mórula/metabolismo , Procesamiento Proteico-Postraduccional , Interferencia de ARN , ARN Mensajero/administración & dosificación , ARN Mensajero/análisis , ARN Mensajero/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Proteínas Represoras/antagonistas & inhibidores , Análisis de Secuencia de ARN
4.
J Cell Physiol ; 234(10): 17370-17381, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30786018

RESUMEN

Oocyte quality, which is directly related to reprogramming competence, is a major important limiting factor in animal cloning efficiency. Compared with oocytes matured in vivo, in vitro matured oocytes exhibit lower oocyte quality and reprogramming competence primarily because of their higher levels of reactive oxygen species. In this study, we investigate whether supplementing the oocyte maturation medium with melatonin, a free radical scavenger, could improve oocyte quality and reprogramming competence. We found that 10-9 M melatonin effectively alleviated oxidative stress, markedly decreased early apoptosis levels, recovered the integrity of mitochondria, ameliorated the spindle assembly and chromosome alignment in oocytes, and significantly promoted subsequent cloned embryo development in vitro. We also analyzed the effects of melatonin on epigenetic modifications in bovine oocytes. Melatonin increased the global H3K9 acetylation levels, reduced the H3K9 methylation levels, and minimally affected DNA methylation and hydroxymethylation. Genome-wide expression analysis of genes in melatonin-treated and nontreated oocytes was also conducted by high-throughput RNA sequencing. Our results indicated that melatonin ameliorates oocyte oxidative stress and improves subsequent in vitro development of bovine cloned embryos.


Asunto(s)
Desarrollo Embrionario/efectos de los fármacos , Melatonina/farmacología , Oocitos/efectos de los fármacos , Oogénesis/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Bovinos , Clonación de Organismos/métodos , Desarrollo Embrionario/genética , Técnicas de Maduración In Vitro de los Oocitos/métodos , Oocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
5.
Toxicol Appl Pharmacol ; 379: 114684, 2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31325558

RESUMEN

Cadmium (Cd), a known metal contaminant, is widespreadly used in industry, thereby human health is severely affected through the way of occupational and environmental exposure. The adverse effects of the exposure to Cd on the female reproductive system, especially oocyte maturation and fertility have not been clearly defined. In this study, we found the arrested development of ovaries and uteri after Cd exposure and determined oocyte quality via assessing the key regulators during meiotic maturation and fertilization. We found that Cd exposure impeded the mouse oocyte meiotic progression by disrupting the normal spindle assembly, chromosome alignment and actin cap formation. Besides, exposure to Cd induced oxidative stress with the increased reactive oxygen species and apoptosis levels, leading to abnormal mitochondrial distribution, insufficient energy supply, and DNA damage, which ultimately led to oocyte quality deterioration. We also analyzed the effects of cadmium on epigenetic modifications, and the levels of 5mC, H3K9me3 and H3K9ac decreased after acute exposure to cadmium. Further experiments showed that the litter size in Cd-exposed female mice reduced, thereby indicating increased reproductive Cd toxicity. In conclusion, Cd exposure impairs oocyte maturation and fertilization ability induced by oxidative stress, early apoptosis and epigenetic modifications, which lead to the decrease of female fertility.


Asunto(s)
Cadmio/toxicidad , Fertilidad/efectos de los fármacos , Oocitos/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Femenino , Técnica del Anticuerpo Fluorescente , Glutatión/metabolismo , Meiosis/efectos de los fármacos , Ratones , Ratones Endogámicos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Útero/efectos de los fármacos
6.
Reprod Sci ; 27(1): 163-171, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32046373

RESUMEN

The methionine adenosyltransferase 2ß gene (Mat2b) encodes for the regulatory subunit of methionine adenosyltransferase (MAT), which catalyzes the biosynthesis of S-adenosylmethionine. MAT2B interacts with G protein-coupled receptor kinase interacting ArfGAP1 to increase the activity of extracellular signal-regulated kinases (ERKs) for the regulation of cell growth, metabolism, and differentiation. ERK activity is also essential for oocyte meiosis in mice. However, the regulatory role of MAT2B in mouse oocyte meiosis remains unclear. Accordingly, this study investigated the effect of MAT2B on mouse oocyte maturation. Immunostaining showed that MAT2B localized predominantly in the nucleus of fully grown germinal vesicle (GV) oocytes. After germinal vesicle breakdown (GVBD), MAT2B homogeneously localized in the cytoplasm. A low oocyte maturation rate was observed in Mat2b siRNA-treated oocytes. Furthermore, Mat2b knockdown repressed the phosphorylation of ERK1/2 and consequently blocked MAPK. Denuded oocytes treated with 20 µM U0126 mainly blocked MAPK phosphorylation and affected oocyte maturation. The oocytes arrested at GVBD and metaphase I (MI) by Mat2b silencing or U0126 treatment had several types of abnormal microtubule assembly. Furthermore, Mat2b knockdown or U0126 treatment resulted in the aberrant expression of six maternal transcripts, namely, Fgf8, Cdc2, Gdf9, Padi6, Polr2d, and Tecb2. To the best of our knowledge, this study is the first to demonstrate that Mat2bs play an important role in mouse oocyte maturation though MAPK signaling.


Asunto(s)
Sistema de Señalización de MAP Quinasas/fisiología , Metionina Adenosiltransferasa/metabolismo , Oocitos/metabolismo , Oogénesis/fisiología , Animales , Butadienos/farmacología , Inhibidores Enzimáticos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Nitrilos/farmacología , Oocitos/efectos de los fármacos , Oocitos/crecimiento & desarrollo , Oogénesis/efectos de los fármacos , Fosforilación/efectos de los fármacos
7.
Theriogenology ; 148: 236-248, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31735432

RESUMEN

Ochratoxin A (OTA) is a mycotoxin produced by fungi and occurs naturally in various foodstuffs and some animal-derived products. This mycotoxin can cause deleterious effects on kidney, liver, central nervous, and immune system. However, potential mechanisms regarding how OTA disrupts the mammalian oocyte quality have not been clearly defined. In this study, we proved that OTA weakened oocyte quality by impairing oocyte meiotic maturation. We found that female mice treated with 1 mg/kg body weight OTA by intraperitoneal (IP) injection for 7 days displayed ovarian dysfunction and decreased offspring number. We also found that OTA treatment at 7.5 µM for 16 h decreased the rate of first polar body extrusion by disrupting spindle and chromosome alignment. In addition, OTA caused oxidative stress by inducing the accumulation of reactive oxygen species and consumption of antioxidants during meiosis, consequently resulting in oocytes apoptosis. Mitochondrial damage and insufficient energy supply were also observed in OTA-pretreated oocytes, which led to the meiotic failure of oocyte. Moreover, the epigenetic modifications were also affected, showing with altered 5 mC, 5hmC, H3K9ac, and H3K9me3 levels in mice oocytes. In summary, these results showed that OTA could decrease oocyte maturation and fertility by inducing oxidative stress and epigenetic changes.


Asunto(s)
Meiosis/efectos de los fármacos , Ocratoxinas/toxicidad , Oocitos/efectos de los fármacos , Animales , Epigénesis Genética , Femenino , Fertilización In Vitro , Tamaño de la Camada , Masculino , Ratones , Especies Reactivas de Oxígeno
8.
J Agric Food Chem ; 67(12): 3459-3468, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30813722

RESUMEN

Bis(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer in polyvinyl chloride (PVC) plastics. Humans and animals are widely and continuously exposed to DEHP, especially with respect to diet, which is associated with reproductive diseases. Nevertheless, the effects and underlying mechanisms of DEHP exposure on oocytes in vivo remain ambiguous. In this study, we found that oral administration of DEHP (40 µg/kg body weight per day for 14 days) markedly reduced the maturation and fertilization of oocytes in vivo. In addition, DEHP caused oxidative stress, increased reactive oxygen species generation, promoted early apoptosis, and resulted in DNA damage in mouse oocytes. Moreover, DEHP exposure caused mitochondrial damage, reduced ATP content, down-regulated actin expression, and disturbed the spindle assembly and chromosome alignment in mouse oocytes. Furthermore, DEHP exposure remarkably impaired the localization and protein level of Juno, the sperm receptor on the membrane of oocytes. The levels of DNA methylation, H3K9me3, and H3K9ac were also altered in the DEHP-exposed mouse oocytes. Thus, our results indicated that DEHP exposure reduced the maturation and fertilization capabilities of mouse oocytes by affecting cytoskeletal dynamics, oxidative stress, early apoptosis, meiotic spindle morphology, mitochondria, ATP content, Juno expression, DNA damage, and epigenetic modifications in mouse oocytes.


Asunto(s)
Dietilhexil Ftalato/toxicidad , Fertilización/efectos de los fármacos , Meiosis/efectos de los fármacos , Oocitos/efectos de los fármacos , Plastificantes/toxicidad , Animales , Daño del ADN/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Oocitos/citología , Oocitos/metabolismo , Estrés Oxidativo/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA