Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Entropy (Basel) ; 23(6)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199779

RESUMEN

Cyber-physical systems (CPS) have been widely employed as wireless control networks. There is a special type of CPS which is developed from the wireless networked control systems (WNCS). They usually include two communication links: Uplink transmission and downlink transmission. Those two links form a closed-loop. When such CPS are deployed for time-sensitive applications such as remote control, the uplink and downlink propagation delay are non-negligible. However, existing studies on CPS/WNCS usually ignore the propagation delay of the uplink and downlink channels. In order to achieve the best balance between uplink and downlink transmissions under such circumstances, we propose a heuristic framework to obtain the optimal scheduling strategy that can minimize the long-term average control cost. We model the optimization problem as a Markov decision process (MDP), and then give the sufficient conditions for the existence of the optimal scheduling strategy. We propose the semi-predictive framework to eliminate the impact of the coupling characteristic between the uplink and downlink data packets. Then we obtain the lookup table-based optimal offline strategy and the neural network-based suboptimal online strategy. Numerical simulation shows that the scheduling strategies obtained by this framework can bring significant performance improvements over the existing strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA