Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
FASEB J ; 33(4): 5300-5311, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30681884

RESUMEN

Transcriptional and epigenetic regulation is fundamentally involved in initiating and maintaining progression of cellular differentiation. The 2 types of thermogenic adipocytes, brown and beige, are thought to be of different origins but share functionally similar phenotypes. Here, we report that lysine-specific demethylase 2 (LSD2) regulates the expression of genes associated with lineage identity during the differentiation of brown and beige adipogenic progenitors in mice. In HB2 mouse brown preadipocytes, short hairpin RNA-mediated knockdown (KD) of LSD2 impaired formation of lipid droplet-containing adipocytes and down-regulated brown adipogenesis-associated genes. Transcriptomic analysis revealed that myogenesis-associated genes were up-regulated in LSD2-KD cells under adipogenic induction. In addition, loss of LSD2 during later phases of differentiation had no obvious influence on adipogenic traits, suggesting that LSD2 functions during earlier phases of brown adipocyte differentiation. Using adipogenic cells from the brown adipose tissues of LSD2-knockout (KO) mice, we found reduced expression of brown adipogenesis genes, whereas myogenesis genes were not affected. In contrast, when LSD2-KO cells from inguinal white adipose tissues were subjected to beige induction, these cells showed a dramatic rise in myogenic gene expression. Collectively, these results suggest that LSD2 regulates distinct sets of genes during brown and beige adipocyte formation.-Takase, R., Hino, S., Nagaoka, K., Anan, K., Kohrogi, K., Araki, H., Hino, Y., Sakamoto, A., Nicholson, T. B., Chen, T., Nakao, M. Lysine-specific demethylase-2 is distinctively involved in brown and beige adipogenic differentiation.


Asunto(s)
Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Histona Demetilasas/metabolismo , ARN Interferente Pequeño/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Western Blotting , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Inmunoprecipitación de Cromatina , Femenino , Histona Demetilasas/genética , Lentivirus/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/metabolismo , ARN Interferente Pequeño/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
Nucleic Acids Res ; 46(11): 5441-5454, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29618057

RESUMEN

The metabolic properties of cells are formed under the influence of environmental factors such as nutrients and hormones. Although such a metabolic program is likely initiated through epigenetic mechanisms, the direct links between metabolic cues and activities of chromatin modifiers remain largely unknown. In this study, we show that lysine-specific demethylase-1 (LSD1) controls the metabolic program in myogenic differentiation, under the action of catabolic hormone, glucocorticoids. By using transcriptomic and epigenomic approaches, we revealed that LSD1 bound to oxidative metabolism and slow-twitch myosin genes, and repressed their expression. Consistent with this, loss of LSD1 activity during differentiation enhanced the oxidative capacity of myotubes. By testing the effects of various hormones, we found that LSD1 levels were decreased by treatment with the glucocorticoid dexamethasone (Dex) in cultured myoblasts and in skeletal muscle from mice. Mechanistically, glucocorticoid signaling induced expression of a ubiquitin E3 ligase, JADE-2, which was responsible for proteasomal degradation of LSD1. Consequently, in differentiating myoblasts, chemical inhibition of LSD1, in combination with Dex treatment, synergistically de-repressed oxidative metabolism genes, concomitant with increased histone H3 lysine 4 methylation at these loci. These findings demonstrated that LSD1 serves as an epigenetic regulator linking glucocorticoid action to metabolic programming during myogenic differentiation.


Asunto(s)
Dexametasona/farmacología , Glucocorticoides/farmacología , Histona Demetilasas/metabolismo , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Histona Demetilasas/antagonistas & inhibidores , Histonas/metabolismo , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Oxidación-Reducción , Ubiquitina-Proteína Ligasas/metabolismo
3.
Elife ; 122023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36695573

RESUMEN

Skeletal muscle exhibits remarkable plasticity in response to environmental cues, with stress-dependent effects on the fast-twitch and slow-twitch fibers. Although stress-induced gene expression underlies environmental adaptation, it is unclear how transcriptional and epigenetic factors regulate fiber type-specific responses in the muscle. Here, we show that flavin-dependent lysine-specific demethylase-1 (LSD1) differentially controls responses to glucocorticoid and exercise in postnatal skeletal muscle. Using skeletal muscle-specific LSD1-knockout mice and in vitro approaches, we found that LSD1 loss exacerbated glucocorticoid-induced atrophy in the fast fiber-dominant muscles, with reduced nuclear retention of Foxk1, an anti-autophagic transcription factor. Furthermore, LSD1 depletion enhanced endurance exercise-induced hypertrophy in the slow fiber-dominant muscles, by induced expression of ERRγ, a transcription factor that promotes oxidative metabolism genes. Thus, LSD1 serves as an 'epigenetic barrier' that optimizes fiber type-specific responses and muscle mass under the stress conditions. Our results uncover that LSD1 modulators provide emerging therapeutic and preventive strategies against stress-induced myopathies such as sarcopenia, cachexia, and disuse atrophy.


Asunto(s)
Glucocorticoides , Enfermedades Musculares , Ratones , Animales , Glucocorticoides/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Factores de Transcripción/metabolismo , Histona Demetilasas/genética , Histona Demetilasas/metabolismo
4.
Blood Adv ; 5(9): 2305-2318, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33929501

RESUMEN

Acute myeloid leukemia (AML) is a heterogenous malignancy characterized by distinct lineage subtypes and various genetic/epigenetic alterations. As with other neoplasms, AML cells have well-known aerobic glycolysis, but metabolic variations depending on cellular lineages also exist. Lysine-specific demethylase-1 (LSD1) has been reported to be crucial for human leukemogenesis, which is currently one of the emerging therapeutic targets. However, metabolic roles of LSD1 and lineage-dependent factors remain to be elucidated in AML cells. Here, we show that LSD1 directs a hematopoietic lineage-specific metabolic program in AML subtypes. Erythroid leukemia (EL) cells particularly showed activated glycolysis and high expression of LSD1 in both AML cell lines and clinical samples. Transcriptome, chromatin immunoprecipitation-sequencing, and metabolomic analyses revealed that LSD1 was essential not only for glycolysis but also for heme synthesis, the most characteristic metabolic pathway of erythroid origin. Notably, LSD1 stabilized the erythroid transcription factor GATA1, which directly enhanced the expression of glycolysis and heme synthesis genes. In contrast, LSD1 epigenetically downregulated the granulo-monocytic transcription factor C/EBPα. Thus, the use of LSD1 knockdown or chemical inhibitor dominated C/EBPα instead of GATA1 in EL cells, resulting in metabolic shifts and growth arrest. Furthermore, GATA1 suppressed the gene encoding C/EBPα that then acted as a repressor of GATA1 target genes. Collectively, we conclude that LSD1 shapes metabolic phenotypes in EL cells by balancing these lineage-specific transcription factors and that LSD1 inhibitors pharmacologically cause lineage-dependent metabolic remodeling.


Asunto(s)
Leucemia Eritroblástica Aguda , Proteína alfa Potenciadora de Unión a CCAAT , Factor de Transcripción GATA1/genética , Histona Demetilasas/genética , Humanos , Leucemia Eritroblástica Aguda/genética , Proteínas Proto-Oncogénicas , Factores de Transcripción
5.
Trends Endocrinol Metab ; 30(7): 409-412, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31151734

RESUMEN

Various nutritional signals are transduced by two epigenetic pathways: NAD-dependent sirtuin Sirt1 (NAD+-Sirt1) deacetylase and flavin adenine dinucleotide-dependent lysine-specific demethylase 1 (FAD-LSD1). These pathways are controlled by dietary vitamins and nutrient-responsive hormones such as glucocorticoids and insulin, resulting in endocrine-metabolism-epigenome cooperation in adipocyte and skeletal muscle development.


Asunto(s)
Flavina-Adenina Dinucleótido/metabolismo , Histona Demetilasas/metabolismo , NAD/metabolismo , Sirtuina 1/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Animales , Flavina-Adenina Dinucleótido/genética , Glucocorticoides/metabolismo , Histona Demetilasas/genética , Humanos , NAD/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Sirtuina 1/genética
6.
Cancer Res ; 75(7): 1445-56, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25649769

RESUMEN

The hallmark of most cancer cells is the metabolic shift from mitochondrial to glycolytic metabolism for adapting to the surrounding environment. Although epigenetic modification is intimately linked to cancer, the molecular mechanism, by which epigenetic factors regulate cancer metabolism, is poorly understood. Here, we show that lysine-specific demethylase-1 (LSD1, KDM1A) has an essential role in maintaining the metabolic shift in human hepatocellular carcinoma cells. Inhibition of LSD1 reduced glucose uptake and glycolytic activity, with a concurrent activation of mitochondrial respiration. These metabolic changes coexisted with the inactivation of the hypoxia-inducible factor HIF1α, resulting in a decreased expression of GLUT1 and glycolytic enzymes. In contrast, during LSD1 inhibition, a set of mitochondrial metabolism genes was activated with the concomitant increase of methylated histone H3 at lysine 4 in the promoter regions. Consistently, both LSD1 and GLUT1 were significantly overexpressed in carcinoma tissues. These findings demonstrate the epigenetic plasticity of cancer cell metabolism, which involves an LSD1-mediated mechanism.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Histona Demetilasas/fisiología , Neoplasias Hepáticas/enzimología , Mitocondrias Hepáticas/enzimología , Animales , Carcinoma Hepatocelular/patología , Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Glucólisis , Células Hep G2 , Histonas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Neoplasias Hepáticas/patología , Metilación , Ratones SCID , Trasplante de Neoplasias , Procesamiento Proteico-Postraduccional , Carga Tumoral
7.
Mol Cell Biol ; 35(7): 1068-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25624347

RESUMEN

Cells link environmental fluctuations, such as nutrition, to metabolic remodeling. Epigenetic factors are thought to be involved in such cellular processes, but the molecular basis remains unclear. Here we report that the lysine-specific demethylase 2 (LSD2) suppresses the flux and metabolism of lipids to maintain the energy balance in hepatic cells. Using transcriptome and chromatin immunoprecipitation-sequencing analyses, we revealed that LSD2 represses the genes involved in lipid influx and metabolism through demethylation of histone H3K4. Selective recruitment of LSD2 at lipid metabolism gene loci was mediated in part by a stress-responsive transcription factor, c-Jun. Intriguingly, LSD2 depletion increased the intracellular levels of many lipid metabolites, which was accompanied by an increased susceptibility to toxic cell damage in response to fatty acid exposure. Our data demonstrate that LSD2 maintains metabolic plasticity under fluctuating environment in hepatocytes by mediating the cross talk between the epigenome and metabolism.


Asunto(s)
Regulación hacia Abajo , Hepatocitos/metabolismo , Histona Demetilasas/metabolismo , Metabolismo de los Lípidos , Lípidos/genética , Animales , Células Hep G2 , Histonas/metabolismo , Humanos , Hígado/metabolismo , Lisina/metabolismo , Masculino , Metilación , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-jun/metabolismo
8.
Nat Commun ; 3: 758, 2012 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-22453831

RESUMEN

Environmental factors such as nutritional state may act on the epigenome that consequently contributes to the metabolic adaptation of cells and the organisms. The lysine-specific demethylase-1 (LSD1) is a unique nuclear protein that utilizes flavin adenosine dinucleotide (FAD) as a cofactor. Here we show that LSD1 epigenetically regulates energy-expenditure genes in adipocytes depending on the cellular FAD availability. We find that the loss of LSD1 function, either by short interfering RNA or by selective inhibitors in adipocytes, induces a number of regulators of energy expenditure and mitochondrial metabolism such as PPARγ coactivator-1α resulting in the activation of mitochondrial respiration. In the adipose tissues from mice on a high-fat diet, expression of LSD1-target genes is reduced, compared with that in tissues from mice on a normal diet, which can be reverted by suppressing LSD1 function. Our data suggest a novel mechanism where LSD1 regulates cellular energy balance through coupling with cellular FAD biosynthesis.


Asunto(s)
Metabolismo Energético , Flavina-Adenina Dinucleótido/metabolismo , Mitocondrias/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Células 3T3 , Adipocitos/metabolismo , Animales , Línea Celular , Dieta Alta en Grasa , Ingestión de Alimentos , Perfilación de la Expresión Génica , Células HEK293 , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Demetilasas , Humanos , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Oxidorreductasas N-Desmetilantes/genética , PPAR gamma/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA