Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Healthcare (Basel) ; 10(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35885821

RESUMEN

Alcohol consumption is linked to urinary sodium excretion and both of these traits are linked to hypertension and cardiovascular diseases (CVDs). The interplay between alcohol consumption and sodium on hypertension, and cardiovascular diseases (CVDs) is not well-described. Here, we used genetically predicted alcohol consumption and explored the relationships between alcohol consumption, urinary sodium, hypertension, and CVDs. METHODS: We performed a comparative analysis among 295,189 participants from the prospective cohort of the UK Biobank (baseline data collected between 2006 and 2010). We created a genetic risk score (GRS) using 105 published genetic variants in Europeans that were associated with alcohol consumption. We explored the relationships between GRS, alcohol consumption, urinary sodium, blood pressure traits, and incident CVD. We used linear and logistic regression and Cox proportional hazards (PH) models and Mendelian randomization in our analysis. RESULTS: The median follow-up time for composite CVD and stroke were 6.1 years and 7.1 years respectively. Our analyses showed that high alcohol consumption is linked to low urinary sodium excretion. Our results showed that high alcohol GRS was associated with high blood pressure and higher risk of stroke and supported an interaction effect between alcohol GRS and urinary sodium on stage 2 hypertension (Pinteraction = 0.03) and CVD (Pinteraction = 0.03), i.e., in the presence of high urinary sodium excretion, the effect of alcohol GRS on blood pressure may be enhanced. CONCLUSIONS: Our results show that urinary sodium excretion may offset the risk posed by genetic risk of alcohol consumption.

2.
Nat Genet ; 53(6): 840-860, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34059833

RESUMEN

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.


Asunto(s)
Glucemia/genética , Carácter Cuantitativo Heredable , Población Blanca/genética , Alelos , Epigénesis Genética , Perfilación de la Expresión Génica , Genoma Humano , Estudio de Asociación del Genoma Completo , Hemoglobina Glucada/metabolismo , Humanos , Herencia Multifactorial/genética , Mapeo Físico de Cromosoma , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA