Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Hum Mutat ; 42(3): 246-260, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33300159

RESUMEN

Understanding the splicing code can be challenging as several splicing factors bind to many splicing-regulatory elements. The SMN1 and SMN2 silencer element ISS-N1 is the target of the antisense oligonucleotide drug, Spinraza, which is the treatment against spinal muscular atrophy. However, limited knowledge about the nature of the splicing factors that bind to ISS-N1 and inhibit splicing exists. It is likely that the effect of Spinraza comes from blocking binding of these factors, but so far, an unbiased characterization has not been performed and only members of the hnRNP A1/A2 family have been identified by Western blot analysis and nuclear magnetic resonance to bind to this silencer. Employing an MS/MS-based approach and surface plasmon resonance imaging, we show for the first time that splicing factor SRSF10 binds to ISS-N1. Furthermore, using splice-switching oligonucleotides we modulated the splicing of the SRSF10 isoforms generating either the long or the short protein isoform of SRSF10 to regulate endogenous SMN2 exon 7 inclusion. We demonstrate that the isoforms of SRSF10 regulate SMN1 and SMN2 splicing with different strength correlating with the length of their RS domain. Our results suggest that the ratio between the SRSF10 isoforms is important for splicing regulation.


Asunto(s)
Proteínas de Ciclo Celular , Atrofia Muscular Espinal , Proteínas Represoras , Factores de Empalme Serina-Arginina , Proteína 2 para la Supervivencia de la Neurona Motora , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Exones , Humanos , Atrofia Muscular Espinal/genética , Oligonucleótidos Antisentido , Empalme del ARN , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Espectrometría de Masas en Tándem
2.
Mol Genet Metab ; 126(1): 64-76, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30446350

RESUMEN

Resveratrol (RSV) is a small compound first identified as an activator of sirtuin 1 (SIRT1), a key factor in mediating the effects of caloric restriction. Since then, RSV received great attention for its widespread beneficial effects on health and in connection to many diseases. RSV improves the metabolism and the mitochondrial function, and more recently it was shown to restore fatty acid ß-oxidation (FAO) capacities in patient fibroblasts harboring mutations with residual enzyme activity. Many of RSV's beneficial effects are mediated by the transcriptional coactivator PGC-1α, a direct target of SIRT1 and a master regulator of the mitochondrial fatty acid oxidation. Despite numerous studies RSV's mechanism of action is still not completely elucidated. Our aim was to investigate the effects of RSV on gene regulation on a wide scale, possibly to detect novel genes whose up-regulation by RSV may be of interest with respect to disease treatment. We performed Next Generation Sequencing of RNA on normal fibroblasts treated with RSV. To investigate whether the effects of RSV are mediated through SIRT1 we expanded the analysis to include SIRT1-knockdown fibroblasts. We identified the aspartoacylase (ASPA) gene, mutated in Canavan disease, to be strongly up-regulated by RSV in several cell lines, including Canavan disease fibroblasts. We further link RSV to the up-regulation of other genes involved in myelination including the glial specific transcription factors POU3F1, POU3F2, and myelin basic protein (MBP). We also observe a strong up-regulation by RSV of the riboflavin transporter gene SLC52a1. Mutations in SLC52a1 cause transient multiple acyl-CoA dehydrogenase deficiency (MADD). Our analysis of alternative splicing identified novel metabolically important genes affected by RSV, among which is particularly interesting the α subunit of the stimulatory G protein (Gsα), which regulates the cellular levels of cAMP through adenylyl cyclase. We conclude that in fibroblasts RSV stimulates the PGC-1α and p53 pathways, and up-regulates genes affecting the glucose metabolism, mitochondrial ß-oxidation, and mitochondrial biogenesis. We further confirm that RSV might be a relevant treatment in the correction of FAO deficiencies and we suggest that treatment in other metabolic disorders including Canavan disease and MADD might be also beneficial.


Asunto(s)
Enfermedad de Canavan/diagnóstico , Fibroblastos/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento , Resveratrol/farmacología , Amidohidrolasas/genética , Enfermedad de Canavan/tratamiento farmacológico , Línea Celular , Células Cultivadas , Regulación de la Expresión Génica , Genes p53 , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos , Terapia Molecular Dirigida , Proteína Básica de Mielina/genética , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptores Acoplados a Proteínas G/genética , Análisis de Secuencia de ARN , Sirtuina 1/genética , Factores de Transcripción/genética , Regulación hacia Arriba
3.
Hum Mutat ; 35(1): 86-95, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24123825

RESUMEN

Multiple acyl-CoA dehydrogenation deficiency is a disorder of fatty acid and amino acid oxidation caused by defects of electron transfer flavoprotein (ETF) or its dehydrogenase (ETFDH). A clear relationship between genotype and phenotype makes genotyping of patients important not only diagnostically but also for prognosis and for assessment of treatment. In the present study, we show that a predicted benign ETFDH missense variation (c.158A>G/p.Lys53Arg) in exon 2 causes exon skipping and degradation of ETFDH protein in patient samples. Using splicing reporter minigenes and RNA pull-down of nuclear proteins, we show that the c.158A>G variation increases the strength of a preexisting exonic splicing silencer (ESS) motif UAGGGA. This ESS motif binds splice inhibitory hnRNP A1, hnRNP A2/B1, and hnRNP H proteins. Binding of these inhibitory proteins prevents binding of the positive splicing regulatory SRSF1 and SRSF5 proteins to nearby and overlapping exonic splicing enhancer elements and this causes exon skipping. We further suggest that binding of hnRNP proteins to UAGGGA is increased by triggering synergistic hnRNP H binding to GGG triplets located upstream and downsteam of the UAGGGA motif. A number of disease-causing exonic elements that induce exon skipping in other genes have a similar architecture as the one in ETFDH exon 2.


Asunto(s)
Adenosina/metabolismo , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Guanina/metabolismo , Proteínas Hierro-Azufre/genética , Proteínas Hierro-Azufre/metabolismo , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Empalme del ARN , Secuencias de Aminoácidos , Cadáver , Elementos de Facilitación Genéticos , Exones , Regulación de la Expresión Génica , Variación Genética , Células HEK293 , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Recién Nacido , Deficiencia Múltiple de Acil Coenzima A Deshidrogenasa/diagnóstico , Mutación Missense , Proteínas Nucleares/metabolismo , Unión Proteica , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ADN , Factores de Empalme Serina-Arginina , Elementos Silenciadores Transcripcionales , Repeticiones de Trinucleótidos
4.
Mol Genet Metab ; 100(4): 316-23, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20457534

RESUMEN

PKU is caused by mutations in PAH. A c.30C>G synonymous variation in exon 1, previously reported as neutral, was observed in two patients. The variation creates a GGG triplet, which is part of several exonic splicing silencer (ESS) motifs. Because the 5'-splice site of PAH exon 1 is intrinsically weak and therefore could be responsive to a new flanking ESS, we hypothesized that c.30C>G could cause aberrant mRNA splicing. We demonstrate that c.30C>G causes aberrant mRNA splicing in two different reporter minigenes, and that this is abolished if a preexisting flanking GGG triplet is disrupted. GGG triplets are part of the consensus motif bound by splicing-inhibitory hnRNPH proteins and we observed a dramatic increase in hnRNPH binding to c.30C>G PAH RNA. We conclude that c.30C>G creates a hnRNPH-binding ESS, which can disrupt mRNA splicing. A disease-causing mutation in HEXB, which has previously been associated with exon skipping in patients also creates a GGG triplet. We show that the mutant HEXB motif causes exon skipping of a reporter minigene and that this is also influenced by a flanking GGG triplet. We suggest that aberrant splicing caused by creation/abolishment of GGG triplets located together with a preexisting flanking GGG triplet, may be an underreported cause of human disease. It is important to recognize that exonic sequence changes may disrupt mRNA splicing. This is particularly important in PAH, since PKU patients harboring such mutations are unlikely to respond to therapy with 6R-tetrahydrobiopterin (BH(4)), despite the fact that the genetic code indicates otherwise.


Asunto(s)
Empalme Alternativo/genética , Exones/genética , Fenilalanina Hidroxilasa/genética , Polimorfismo de Nucleótido Simple/genética , Elementos Silenciadores Transcripcionales/genética , Secuencias de Aminoácidos , Sustitución de Aminoácidos/genética , Secuencia de Bases , Análisis Mutacional de ADN , Genes Reporteros/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Humanos , Datos de Secuencia Molecular , Unión Proteica , Repeticiones de Trinucleótidos/genética , Cadena beta de beta-Hexosaminidasa/genética
5.
J Nutr ; 140(10): 1728-35, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20685892

RESUMEN

We previously detected a membrane-bound, copper-containing oxidase that may be involved in iron efflux in BeWo cells, a human placental cell line. We have now identified a gene encoding a predicted multicopper ferroxidase (MCF) with a putative C-terminal membrane-spanning sequence and high sequence identity to hephaestin (Heph) and ceruloplasmin (Cp), the other known vertebrate MCF. Molecular modeling revealed conservation of all type I, II, and III copper-binding sites as well as a putative iron-binding site. Protein expression was observed in multiple diverse mouse tissues, including placenta and mammary gland, and the expression pattern was distinct from that of Cp and Heph. The protein possessed ferroxidase activity, and protein levels decreased in cellular copper deficiency. Knockdown with small interfering RNA in BeWo cells indicates that this gene represents the previously detected oxidase. We propose calling this new member of the MCF family "zyklopen."


Asunto(s)
Ceruloplasmina/química , Ceruloplasmina/genética , Cobre/análisis , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Ceruloplasmina/análisis , Cobre/metabolismo , Femenino , Expresión Génica , Humanos , Hierro/metabolismo , Glándulas Mamarias Animales/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Modelos Moleculares , Especificidad de Órganos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Fragmentos de Péptidos/química , Placenta/enzimología , Embarazo , ARN Interferente Pequeño/farmacología , Ratas , Homología de Secuencia
6.
Biochem Soc Trans ; 36(Pt 6): 1258-61, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19021536

RESUMEN

During development, the fetus is entirely dependent on the mother for its nutrient requirements. Subsequently, it is a period when both are vulnerable to changes in dietary supply, especially of those nutrients that are marginal under normal circumstances. In developed countries, this applies mainly to micronutrients. Even now, iron deficiency is a common disorder, especially in pregnancy. Similarly, copper intake in the U.K. population is rarely above adequate levels. It is now becoming clear that nutrient deficiencies during pregnancy can result in problems for the offspring, in both the short- and long-term. Early studies showed that lambs born to mothers on copper-deficient pastures developed 'swayback', with neurological and muscular symptoms that could not be reversed by postnatal supplementation. Our own findings have shown that prenatal iron deficiency results in increased postnatal blood pressure, even though the offspring have normal dietary iron levels from birth. These observations emphasize the importance of iron and copper in growth and development. Complicating the situation further is the fact that copper and iron are known to interact with each other in many ways, including absorption and intracellular transport. However, their interactions during the pregnancy appear to be more complex than during the non-pregnant state. In the present review, we examine the importance of these metals and their interactions, the consequences, both short- and long-term, of deficiency and consider some possible mechanisms whereby these effects may be generated.


Asunto(s)
Cobre/metabolismo , Desarrollo Embrionario , Hierro/metabolismo , Animales , Ceruloplasmina/metabolismo , Femenino , Humanos , Absorción Intestinal , Embarazo
7.
Gene ; 338(2): 225-33, 2004 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15315826

RESUMEN

Copper and iron act at different levels on gene expression. Due to their chemical reactivity, both metals could play a role in the regulation of the protein machinery involved in their metabolism, and/or of the metabolic function they are involved in. Experimental and clinical evidences raise also the hypothesis of the existence of genes commonly regulated by both metals. Purpose of this work was to find genes modulated by copper and iron in the rat intestine. A panel of 24 animals was randomly divided into three nutritional treatments including a control, a copper-deficient and an iron-deficient diet. The positive regulation of iron responsive element (IRE)-DMT1 gene was found, with different extent, in both experimental groups. A differential display reverse transcription (DDRT)-polymerase chain reaction (PCR) analysis carried out on the rat intestinal mRNAs demonstrated the differential expression of five cDNA fragments. Among these, the Cytochrome c oxidase (COX) subunit II mitochondrial gene resulted to be regulated by both metals, the Serum and Glucocorticoids-regulated Kinase (SGK) gene mainly by iron, and an Ebnerin-like 2 kb mRNA dramatically down-regulated by copper. Two residual clones showed low identity scores with sequences present in data bank. Finally, we observed that both iron and copper are able to modulate the expression of the three characterized genes in some tissues, other than intestine.


Asunto(s)
Cobre/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Mucosa Intestinal/metabolismo , Hierro/administración & dosificación , Animales , Northern Blotting , Proteínas de Transporte de Catión/genética , Cobre/análisis , Cobre/deficiencia , Dieta , Complejo IV de Transporte de Electrones/genética , Perfilación de la Expresión Génica , Proteínas Inmediatas-Precoces , Intestinos/química , Hierro/análisis , Deficiencias de Hierro , Proteínas de Unión a Hierro/genética , Hígado/química , Hígado/metabolismo , Masculino , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Receptores Inmunológicos/genética , Receptores Depuradores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Destete
8.
Am J Physiol Regul Integr Comp Physiol ; 296(4): R1063-70, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19176888

RESUMEN

Iron metabolism during pregnancy is biased toward maintaining the fetal supply, even at the cost of anemia in the mother. The mechanisms regulating this are not well understood. Here, we examine iron deficiency and supplementation on the hierarchy of iron supply and the gene expression of proteins that regulate iron metabolism in the rat. Dams were fed iron-deficient diets for 4 wk, mated, and either continued on the deficient diet or an iron-supplemented diet during either the first half or the second half of their pregnancy. A control group was maintained on normal iron throughout. They were killed at 0.5, 12.5, or 21.5 days of gestation, and tissues and blood samples were collected. Deficiency and supplementation had differential effects on maternal and fetal hematocrit and liver iron levels. From early in pregnancy, a hierarchy of iron supply is established benefiting the fetus to the detriment of the mother. Transferrin receptor, transferrin receptor 2, and hepcidin mRNA expression were regulated by both iron deficiency and supplementation. Expression patterns showed both organ and supplementation protocol dependence. Further analysis indicated that iron levels in the fetal, and not maternal, liver regulate the expression of liver transferrin receptor and hepcidin expression in the mother.


Asunto(s)
Anemia Ferropénica/metabolismo , Suplementos Dietéticos , Feto/metabolismo , Hierro/metabolismo , Hígado/metabolismo , Intercambio Materno-Fetal , Anemia Ferropénica/sangre , Anemia Ferropénica/prevención & control , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Modelos Animales de Enfermedad , Femenino , Sangre Fetal/metabolismo , Feto/efectos de los fármacos , Regulación de la Expresión Génica , Edad Gestacional , Hematócrito , Hepcidinas , Hierro/sangre , Hierro/uso terapéutico , Hígado/efectos de los fármacos , Hígado/embriología , Fenómenos Fisiologicos Nutricionales Maternos , Intercambio Materno-Fetal/efectos de los fármacos , Placenta/metabolismo , Embarazo , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo
9.
Br J Nutr ; 97(2): 239-46, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17298691

RESUMEN

Cu and Fe metabolism are known to be linked, but the interactions during pregnancy are less well studied. In the present study we used rats to examine the effect of Cu deficiency during pregnancy on Fe and Cu levels in maternal and fetal tissue and on the gene expression profile of proteins involved in Cu and Fe metabolism in the placenta. Rats were fed diets with different Cu contents before and during pregnancy. Samples were collected on day 21 of gestation. Cu levels, ceruloplasmin activity and serum Fe all decreased in maternal serum of Cu-deficient animals. Maternal liver Fe inversely correlated with liver Cu. Placental Cu levels decreased with no change in Fe. Fe and Cu levels both decreased in the fetal liver. The drop in maternal liver Cu was significantly correlated with a decrease in organ weight of fetal liver, lung and kidney. No changes were observed in mRNA expression of Cu transporter 1, Menkes P-type Cu-ATPase 7A, Wilson P-type Cu-ATPase 7B, cytochrome-c oxidase, and Cu chaperone Atox1 in the placenta of Cu-deficient dams. Transferrin receptor 1 and the Fe-responsive element (IRE)-regulated divalent metal transporter 1 (DMT1) were up regulated; while ferroportin and non-IRE1-regulated DMT1 levels did not change. These data show that Cu deficiency during pregnancy not only has a direct effect on Fe levels but also regulates the expression of Fe transporters. The pattern closely mirrors that seen in Fe deficiency, suggesting that the changes are a consequence of the decrease in serum Fe, implying that the developing fetus not only suffers from Cu, but also from Fe deficiency.


Asunto(s)
Cobre/deficiencia , Dieta , Hierro/metabolismo , Embarazo/metabolismo , Animales , Proteínas de Transporte de Catión/análisis , Ceruloplasmina/análisis , Cobre/administración & dosificación , Cobre/metabolismo , Femenino , Desarrollo Fetal/fisiología , Perfilación de la Expresión Génica/métodos , Hígado/metabolismo , Tamaño de los Órganos , Placenta/metabolismo , ARN Mensajero/análisis , Ratas , Receptores de Transferrina/análisis
10.
J Nutr ; 136(5): 1171-7, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16614400

RESUMEN

Imbalances in nutrition during pregnancy can lead to long-, as well as short-term consequences, a phenomenon known as fetal programming. However, there is little information about when the fetus is most sensitive to its environment during gestation. We hypothesize that different fetal systems are most vulnerable to nutritional stress during periods of maximal growth and differentiation. We used iron (Fe) deficiency, which causes hypertension in the offspring, to test this hypothesis. We examined development between embryonic day (E) 10.5 and 12.5, when cardiovascular development is maximal, using whole embryo culture. Female rats were fed Fe-deficient or control diet for 4 wk before mating and up to E10.5. The embryos were cultured for 48 h in 95% rat serum collected from males fed either a control or Fe-deficient diet. Growth was impaired and heart size increased in embryos taken from Fe-deficient mothers and cultured in deficient serum compared with control embryos cultured in control serum. To test whether restoring normal Fe levels could reverse these effects, we cultured embryos from control and deficient dams in either control or deficient medium. The yolk sac circulation of embryos from dams fed either diet cultured in deficient medium was less developed, with a thinner and less branched network than that in all embryos cultured in control serum. The heart was enlarged in embryos of deficient dams cultured in deficient serum compared with the heart size of those cultured in control serum. Culturing embryos in control serum reversed these changes. We conclude, therefore, that this period of cardiovascular organogenesis is one of the sensitive windows during which optimal Fe status is critical for normal development.


Asunto(s)
Anemia Ferropénica/fisiopatología , Sistema Cardiovascular/embriología , Implantación del Embrión/fisiología , Desarrollo Embrionario/fisiología , Efectos Tardíos de la Exposición Prenatal , Animales , Encéfalo/embriología , Modelos Animales de Enfermedad , Femenino , Hipertensión/epidemiología , Embarazo , Ratas , Saco Vitelino/fisiología
11.
Proc Nutr Soc ; 63(3): 481-90, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15373961

RESUMEN

As the 21st century moves forward, it is becoming more and more apparent that the genetic makeup of any individual strongly influences the way they metabolise nutrients. It is very important, therefore, to understand the techniques and technologies used to assess the contribution genes make to the physiology of an individual. Clearly, it is not possible to provide a comprehensive overview, but in the present review an attempt will be made to show, using examples from the authors' research, how these methods have contributed to this understanding. Studies are being undertaken into Fe transport across the placenta, from the mother to the fetus, and the consequences of maternal anaemia on pregnancy outcome. Levels of gene transcript and protein have been measured using Northern and Western blotting respectively. During the course of this work a new protein has been identified using the available human genome database. Following this 'in silico' or 'cyber biology', techniques such as real-time RT-PCR and RNA interference have been used to examine expression of this gene and its protein. The methods used, briefly how they work and some of their limitations will be explained. The objective of the present review is primarily to give a better perception of how molecular biology can be used in research and to help gain a clearer understanding of some of the techniques used.


Asunto(s)
Anemia Ferropénica/metabolismo , Variación Genética , Hierro/metabolismo , Oxidorreductasas/metabolismo , Embarazo/metabolismo , Anemia Ferropénica/genética , Anemia Ferropénica/fisiopatología , Northern Blotting , Western Blotting , Cobre/metabolismo , Desarrollo Embrionario y Fetal , Femenino , Humanos , Deficiencias de Hierro , Intercambio Materno-Fetal/fisiología , Oxidorreductasas/genética , Placenta/metabolismo , Resultado del Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
J Nutr ; 133(5 Suppl 1): 1554S-6S, 2003 05.
Artículo en Inglés | MEDLINE | ID: mdl-12730464

RESUMEN

During pregnancy, nutrients are transferred from mother to fetus across the placenta. The mechanisms whereby this occurs, and the adaptations that occur in response to deficiency or overload of iron (Fe) and copper (Cu) are examined in this review. Fe deficiency during pregnancy is common and has serious consequences both in the short and the long term such as fetal growth retardation and cardiovascular problems in the adult offspring. Similarly, Cu deficiency, although not so common, also has deleterious effects. The placenta minimizes the effect of the deficiency by up-regulating the proteins involved in Fe transfer. For example, transferrin receptor levels increase inversely to maternal Fe levels. Divalent metal transporter 1 (DMT1) mRNA in the iron-responsive element (IRE) regulated, but not the non-IRE regulated form is increased, as is the placenta Cu oxidase. Conversely, iron-regulated gene 1 (IREG1) expression is not affected. Fe deficiency increases Cu levels in maternal liver, serum and placenta, but has much less effect in the fetal serum and liver. Apart from maternal ceruloplasmin, mRNA levels of Cu-related proteins are not changed. The Cu oxidase, which we suggest fulfils the function of hephaestin in placenta, is regulated by Cu as well as by Fe. Fe deficiency also has marked effects on cytokine levels in the placenta. Tumor necrosis factor alpha (TNFalpha) and TNFalpha receptor 1 (TNFalphaR1) levels both increase. The data show that altering Fe status has a marked effect on metabolism of other metals and of other important mediators of cell function. This is particularly important during pregnancy, when the developing fetus is very vulnerable to inappropriate micronutrient status.


Asunto(s)
Cobre/metabolismo , Desarrollo Embrionario y Fetal/fisiología , Hierro/metabolismo , Resultado del Embarazo , Animales , Femenino , Humanos , Recién Nacido , Hígado/metabolismo , Placenta/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA