Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Brain ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39269457

RESUMEN

The neuropsychiatric syndrome of apathy is now recognized to be a common and disabling condition in Huntington's disease (HD). However, the mechanisms underlying it are poorly understood. One way to investigate apathy is to utilise a theoretical framework of normal motivated behaviour, to determine where breakdown has occurred in people with this behavioural disruption. A fundamental computation underlying motivated, goal-directed behaviour across species is weighing up the costs and rewards associated with actions. Here, we asked whether people with apathy are more sensitive to costs of actions (physical effort and time delay), less sensitive to rewarding outcomes, or both. Based on the unique anatomical substrates associated with HD pathology, we hypothesised that a general hypersensitivity to costs would underpin HD apathy. Genetically confirmed carriers of the expanded Huntingtin gene (premanifest to mild motor manifest disease (n=53) were compared to healthy controls (n = 38). Participants performed a physical effort-based decision-making task (Apple Gathering Task) and a delay discounting task (Money Choice Questionnaire). Choice data was analysed using linear regression and drift diffusion models that also accounted for the time taken to make decisions. Apathetic people with HD accepted fewer offers overall on the Apple Gathering Task, specifically driven by increased sensitivity to physical effort costs, and not explained by motor severity, mood, cognition, or medication. Drift diffusion modelling provided further evidence of effort hypersensitivity, with apathy associated with a faster drift rate towards rejecting offers as a function of varying effort. Increased delay sensitivity was also associated with apathy, both when analysing raw choice and also drift rate, where there was moderate evidence of HD apathy drifting faster towards the immediately available (low cost) option. Furthermore, the effort and delay sensitivity parameters from these tasks were positively correlated. The results demonstrate a clear mechanism for apathy in HD, cost hypersensitivity, which manifests in both the effort and time costs associated with actions towards rewarding goals. This suggests that HD pathology may cause a domain-general disruption of cost processing, which is distinct to apathy occurrence in other brain disorders, and may require different therapeutic approaches.

2.
BMC Bioinformatics ; 25(1): 247, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075359

RESUMEN

BACKGROUND: Sequence alignment lies at the heart of genome sequence annotation. While the BLAST suite of alignment tools has long held an important role in alignment-based sequence database search, greater sensitivity is achieved through the use of profile hidden Markov models (pHMMs). Here, we describe an FPGA hardware accelerator, called HAVAC, that targets a key bottleneck step (SSV) in the analysis pipeline of the popular pHMM alignment tool, HMMER. RESULTS: The HAVAC kernel calculates the SSV matrix at 1739 GCUPS on a ∼  $3000 Xilinx Alveo U50 FPGA accelerator card, ∼  227× faster than the optimized SSV implementation in nhmmer. Accounting for PCI-e data transfer data processing, HAVAC is 65× faster than nhmmer's SSV with one thread and 35× faster than nhmmer with four threads, and uses ∼  31% the energy of a traditional high end Intel CPU. CONCLUSIONS: HAVAC demonstrates the potential offered by FPGA hardware accelerators to produce dramatic speed gains in sequence annotation and related bioinformatics applications. Because these computations are performed on a co-processor, the host CPU remains free to simultaneously compute other aspects of the analysis pipeline.


Asunto(s)
Cadenas de Markov , Alineación de Secuencia , Alineación de Secuencia/métodos , Biología Computacional/métodos , Homología de Secuencia , Algoritmos , Programas Informáticos
3.
Mol Genet Metab ; 142(3): 108508, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38820906

RESUMEN

Short-chain enoyl-coA hydratase (SCEH) deficiency due to biallelic pathogenic ECHS1 variants was first reported in 2014 in association with Leigh syndrome (LS) and increased S-(2-carboxypropyl)cysteine excretion. It is potentially treatable with a valine-restricted, high-energy diet and emergency regimen. Recently, Simon et al. described four Samoan children harbouring a hypomorphic allele (c.489G > A, p.Pro163=) associated with reduced levels of normally-spliced mRNA. This synonymous variant, missed on standard genomic testing, is prevalent in the Samoan population (allele frequency 0.17). Patients with LS and one ECHS1 variant were identified in NZ and Australian genomic and clinical databases. ECHS1 sequence data were interrogated for the c.489G > A variant and clinical data were reviewed. Thirteen patients from 10 families were identified; all had Pacific ancestry including Samoan, Maori, Cook Island Maori, and Tokelauan. All developed bilateral globus pallidi lesions, excluding one pre-symptomatic infant. Symptom onset was in early childhood, and was triggered by illness or starvation in 9/13. Four of 13 had exercise-induced dyskinesia, 9/13 optic atrophy and 6/13 nystagmus. Urine S-(2-carboxypropyl)cysteine-carnitine and other SCEH-related metabolites were normal or mildly increased. Functional studies demonstrated skipping of exon four and markedly reduced ECHS1 protein. These data provide further support for the pathogenicity of this ECHS1 variant which is also prevalent in Maori, Cook Island Maori, and Tongan populations (allele frequency 0.14-0.24). It highlights the need to search for a second variant in apparent heterozygotes with an appropriate phenotype, and has implications for genetic counselling in family members who are heterozygous for the more severe ECHS1 alleles. SYNOPSIS: Short-chain enoyl-CoA hydratase deficiency is a frequent cause of Leigh-like disease in Maori and wider-Pacific populations, due to the high carrier frequency of a hypomorphic ECHS1 variant c.489G > A, p.[Pro163=, Phe139Valfs*65] that may be overlooked by standard genomic testing.


Asunto(s)
Enoil-CoA Hidratasa , Enfermedad de Leigh , Humanos , Enoil-CoA Hidratasa/genética , Enoil-CoA Hidratasa/deficiencia , Masculino , Femenino , Lactante , Australia/epidemiología , Enfermedad de Leigh/genética , Preescolar , Niño , Mutación , Nueva Zelanda , Alelos , Frecuencia de los Genes
4.
Mov Disord ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39360864

RESUMEN

Cognitive impairment is a well-recognized and debilitating symptom of Parkinson's disease (PD). Degradation in the cortical cholinergic system is thought to be a key contributor. Both postmortem and in vivo cholinergic positron emission tomography (PET) studies have provided valuable evidence of cholinergic system changes in PD, which are pronounced in PD dementia (PDD). A growing body of literature has employed magnetic resonance imaging (MRI), a noninvasive, more cost-effective alternative to PET, to examine cholinergic system structural changes in PD. This review provides a comprehensive discussion of the methodologies and findings of studies that have focused on the relationship between cholinergic basal forebrain (cBF) integrity, based on T1- and diffusion-weighted MRI, and cognitive function in PD. Nucleus basalis of Meynert (Ch4) volume has been consistently reduced in cognitively impaired PD samples and has shown potential utility as a prognostic indicator for future cognitive decline. However, the extent of structural changes in Ch4, especially in early stages of cognitive decline in PD, remains unclear. In addition, evidence for structural change in anterior cBF regions in PD has not been well established. This review underscores the importance of continued cross-sectional and longitudinal research to elucidate the role of cholinergic dysfunction in the cognitive manifestations of PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

5.
Malar J ; 23(1): 138, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720269

RESUMEN

BACKGROUND: Artemisinin resistance in Plasmodium falciparum threatens global malaria elimination efforts. To contain and then eliminate artemisinin resistance in Eastern Myanmar a network of community-based malaria posts was instituted and targeted mass drug administration (MDA) with dihydroartemisinin-piperaquine (three rounds at monthly intervals) was conducted. The prevalence of artemisinin resistance during the elimination campaign (2013-2019) was characterized. METHODS: Throughout the six-year campaign Plasmodium falciparum positive blood samples from symptomatic patients and from cross-sectional surveys were genotyped for mutations in kelch-13-a molecular marker of artemisinin resistance. RESULT: The program resulted in near elimination of falciparum malaria. Of 5162 P. falciparum positive blood samples genotyped, 3281 (63.6%) had K13 mutations. The prevalence of K13 mutations was 73.9% in 2013 and 64.4% in 2019. Overall, there was a small but significant decline in the proportion of K13 mutants (p < 0.001). In the MDA villages there was no significant change in the K13 proportions before and after MDA. The distribution of different K13 mutations changed substantially; F446I and P441L mutations increased in both MDA and non-MDA villages, while most other K13 mutations decreased. The proportion of C580Y mutations fell from 9.2% (43/467) before MDA to 2.3% (19/813) after MDA (p < 0.001). Similar changes occurred in the 487 villages where MDA was not conducted. CONCLUSION: The malaria elimination program in Kayin state, eastern Myanmar, led to a substantial reduction in falciparum malaria. Despite the intense use of artemisinin-based combination therapies, both in treatment and MDA, this did not select for artemisinin resistance.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Artemisininas/farmacología , Artemisininas/uso terapéutico , Mianmar , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Humanos , Estudios Transversales , Femenino , Masculino , Adolescente , Adulto , Administración Masiva de Medicamentos , Adulto Joven , Mutación , Niño , Preescolar , Persona de Mediana Edad , Quinolinas/farmacología , Quinolinas/uso terapéutico , Erradicación de la Enfermedad/estadística & datos numéricos , Piperazinas
6.
Brain ; 146(7): 2739-2752, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37019846

RESUMEN

Work in animal and human neuroscience has identified neural regions forming a network involved in the production of motivated, goal-directed behaviour. In particular, the nucleus accumbens and anterior cingulate cortex are recognized as key network nodes underlying decisions of whether to exert effort for reward, to drive behaviour. Previous work has convincingly shown that this cognitive mechanism, known as effort-based decision making, is altered in people with Parkinson's disease with a syndrome of reduced goal-directed behaviour-apathy. Building on this work, we investigated whether the neural regions implementing effort-based decision-making were associated with apathy in Parkinson's disease, and more importantly, whether changes to these regions were evident prior to apathy development. We performed a large, multimodal neuroimaging analysis in a cohort of people with Parkinson's disease (n = 199) with and without apathy at baseline. All participants had ∼2-year follow-up apathy scores, enabling examination of brain structure and function specifically in those with normal motivation who converted to apathy by ∼2-year follow-up. In addition, of the people with normal motivation, a subset (n = 56) had follow-up neuroimaging data, allowing for examination of the 'rate of change' in key nodes over time in those who did, and did not, convert to apathy. Healthy control (n = 54) data were also included to aid interpretation of findings. Functional connectivity between the nucleus accumbens and dorsal anterior cingulate cortex was higher in people with normal motivation who later converted to apathy compared to those who did not, whereas no structural differences were evident between these groups. In contrast, grey matter volume in these regions was reduced in the group with existing apathy. Furthermore, of those with normal motivation who had undergone longitudinal neuroimaging, converters to apathy showed a higher rate of change in grey matter volume within the nucleus accumbens. Overall, we show that changes in functional connectivity between nucleus accumbens and anterior cingulate cortex precedes apathy in people with Parkinson's disease, with conversion to apathy associated with higher rate of grey matter volume loss in nucleus accumbens, despite no baseline differences. These findings significantly add to an accumulating body of transdiagnostic evidence that apathy arises from disruption to key nodes within a network in which normal goal-directed behaviour is instantiated, and raise the possibility of identifying those at risk for developing apathy before overt motivational deficits have arisen.


Asunto(s)
Apatía , Enfermedad de Parkinson , Humanos , Núcleo Accumbens/diagnóstico por imagen , Encéfalo , Sustancia Gris
7.
Brain ; 146(1): 195-208, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-35833836

RESUMEN

Besides motor symptoms, many individuals with Parkinson's disease develop cognitive impairment perhaps due to coexisting α-synuclein and Alzheimer's disease pathologies and impaired brain insulin signalling. Discovering biomarkers for cognitive impairment in Parkinson's disease could help clarify the underlying pathogenic processes and improve Parkinson's disease diagnosis and prognosis. This study used plasma samples from 273 participants: 103 Parkinson's disease individuals with normal cognition, 121 Parkinson's disease individuals with cognitive impairment (81 with mild cognitive impairment, 40 with dementia) and 49 age- and sex-matched controls. Plasma extracellular vesicles enriched for neuronal origin were immunocaptured by targeting the L1 cell adhesion molecule, then biomarkers were quantified using immunoassays. α-Synuclein was lower in Parkinson's disease compared to control individuals (P = 0.004) and in cognitively impaired Parkinson's disease individuals compared to Parkinson's disease with normal cognition (P < 0.001) and control (P < 0.001) individuals. Amyloid-ß42 did not differ between groups. Phosphorylated tau (T181) was higher in Parkinson's disease than control individuals (P = 0.003) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and controls (P < 0.001). Total tau was not different between groups. Tyrosine-phosphorylated insulin receptor substrate-1 was lower in Parkinson's disease compared to control individuals (P = 0.03) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and controls (P = 0.01), and also decreased with increasing motor symptom severity (P = 0.005); serine312-phosphorylated insulin receptor substrate-1 was not different between groups. Mechanistic target of rapamycin was not different between groups, whereas phosphorylated mechanistic target of rapamycin trended lower in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.05). The ratio of α-synuclein to phosphorylated tau181 was lower in Parkinson's disease compared to controls (P = 0.001), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and decreased with increasing motor symptom severity (P < 0.001). The ratio of insulin receptor substrate-1 phosphorylated serine312 to insulin receptor substrate-1 phosphorylated tyrosine was higher in Parkinson's disease compared to control individuals (P = 0.01), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and increased with increasing motor symptom severity (P = 0.003). α-Synuclein, phosphorylated tau181 and insulin receptor substrate-1 phosphorylated tyrosine contributed in diagnostic classification between groups. These findings suggest that both α-synuclein and tau pathologies and impaired insulin signalling underlie Parkinson's disease with cognitive impairment. Plasma neuronal extracellular vesicles biomarkers may inform cognitive prognosis in Parkinson's disease.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Insulinas , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , alfa-Sinucleína , Receptor de Insulina , Proteínas tau , Péptidos beta-Amiloides , Enfermedad de Alzheimer/complicaciones , Disfunción Cognitiva/complicaciones , Biomarcadores
8.
Mov Disord ; 38(12): 2269-2281, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37964373

RESUMEN

BACKGROUND: Increasing evidence points to a pathophysiological role for the cerebellum in Parkinson's disease (PD). However, regional cerebellar changes associated with motor and non-motor functioning remain to be elucidated. OBJECTIVE: To quantify cross-sectional regional cerebellar lobule volumes using three dimensional T1-weighted anatomical brain magnetic resonance imaging from the global ENIGMA-PD working group. METHODS: Cerebellar parcellation was performed using a deep learning-based approach from 2487 people with PD and 1212 age and sex-matched controls across 22 sites. Linear mixed effects models compared total and regional cerebellar volume in people with PD at each Hoehn and Yahr (HY) disease stage, to an age- and sex- matched control group. Associations with motor symptom severity and Montreal Cognitive Assessment scores were investigated. RESULTS: Overall, people with PD had a regionally smaller posterior lobe (dmax = -0.15). HY stage-specific analyses revealed a larger anterior lobule V bilaterally (dmax = 0.28) in people with PD in HY stage 1 compared to controls. In contrast, smaller bilateral lobule VII volume in the posterior lobe was observed in HY stages 3, 4, and 5 (dmax = -0.76), which was incrementally lower with higher disease stage. Within PD, cognitively impaired individuals had lower total cerebellar volume compared to cognitively normal individuals (d = -0.17). CONCLUSIONS: We provide evidence of a dissociation between anterior "motor" lobe and posterior "non-motor" lobe cerebellar regions in PD. Whereas less severe stages of the disease are associated with larger motor lobe regions, more severe stages of the disease are marked by smaller non-motor regions. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Estudios Transversales , Imagen por Resonancia Magnética , Cerebelo , Encéfalo
9.
Molecules ; 28(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36770687

RESUMEN

Insulin-like growth factor-1 (IGF-1) function declines with age and is associated with brain ageing and the progression of age-related neurological conditions. The reversible binding of IGF-1 to IGF binding protein (IGFBP)-3 regulates the amount of bioavailable, functional IGF-1 in circulation. Cyclic glycine-proline (cGP), a metabolite from the binding site of IGF-1, retains its affinity for IGFBP-3 and competes against IGF-1 for IGFBP-3 binding. Thus, cGP and IGFBP-3 collectively regulate the bioavailability of IGF-1. The molar ratio of cGP/IGF-1 represents the amount of bioavailable and functional IGF-1 in circulation. The cGP/IGF-1 molar ratio is low in patients with age-related conditions, including hypertension, stroke, and neurological disorders with cognitive impairment. Stroke patients with a higher cGP/IGF-1 molar ratio have more favourable clinical outcomes. The elderly with more cGP have better memory retention. An increase in the cGP/IGF-1 molar ratio with age is associated with normal cognition, whereas a decrease in this ratio with age is associated with dementia in Parkinson disease. In addition, cGP administration reduces systolic blood pressure, improves memory, and aids in stroke recovery. These clinical and experimental observations demonstrate the role of cGP in regulating IGF-1 function and its potential clinical applications in age-related brain diseases as a plasma biomarker for-and an intervention to improve-IGF-1 function.


Asunto(s)
Enfermedades del Sistema Nervioso , Enfermedad de Parkinson , Accidente Cerebrovascular , Humanos , Anciano , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina , Factor I del Crecimiento Similar a la Insulina/metabolismo , Relevancia Clínica , Accidente Cerebrovascular/tratamiento farmacológico , Encéfalo/metabolismo , Envejecimiento
10.
J Infect Dis ; 226(9): 1637-1645, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35709327

RESUMEN

BACKGROUND: Rapid diagnostic tests based on detection of histidine-rich proteins (HRPs) are widely used for malaria diagnosis, but parasites carrying pfhrp deletions can evade detection and are increasing in frequency in some countries. Models aim to predict conditions under which pfhrp2 and/or pfhrp3 deletions will increase, but a key parameter-the fitness cost of deletions-is unknown. METHODS: We removed pfhrp2 and/or pfhrp3 from a Malawian parasite clone using gene editing approaches) and measured fitness costs by conducting pairwise competition experiments. RESULTS: We observed significant fitness costs of 0.087 ± 0.008 (1 standard error) per asexual cycle for pfhrp2 deletion and 0.113 ± 0.008 for the pfhrp2/3 double deletion, relative to the unedited progenitor parasite. Selection against deletions is strong and comparable to that resulting from drug resistance mutations. CONCLUSIONS: Prior modeling suggested that diagnostic selection may drive increased frequency of pfhrp deletions only when fitness costs are mild. Our experiments show that costs of pfhrp deletions are higher than these thresholds, but modeling and empirical results can be reconciled if the duration of infection is short. These results may inform future modeling to understand why pfhrp2/3 deletions are increasing in some locations (Ethiopia and Eritrea) but not in others (Mekong region).


Asunto(s)
Malaria Falciparum , Parásitos , Animales , Humanos , Antígenos de Protozoos/genética , Plasmodium falciparum/genética , Malaria Falciparum/parasitología , Proteínas Protozoarias/genética , Eliminación de Gen , Pruebas Diagnósticas de Rutina/métodos
11.
Antimicrob Agents Chemother ; 66(5): e0152921, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35465723

RESUMEN

Drug resistance mutations tend to disrupt key physiological processes and frequently carry fitness costs, which are a central determinant of the rate of spread of these mutations in natural populations. Head-to-head competition assays provide a standard approach to measuring fitness for malaria parasites. These assays typically use a standardized culture medium containing RPMI 1640, which has a 1.4- to 5.5-fold higher concentration of amino acids than human blood. In this rich medium, we predict that fitness costs will be underestimated because resource competition is weak. We tested this prediction using an artemisinin-sensitive parasite edited to contain kelch-C580Y or R561H mutations conferring resistance to artemisinin or synonymous control mutations. We examined the impact of these single amino acid mutations on fitness, using replicated head-to-head competition experiments conducted in media containing (i) normal RPMI, (ii) modified RPMI with reduced amino acid concentration, (iii) RPMI containing only isoleucine, or (iv) 3-fold diluted RPMI. We found a significant 1.3- to 1.4-fold increase in fitness costs measured in modified and isoleucine-only media relative to normal media, while fitness costs were 2.5-fold higher in diluted media. We conclude that fitness costs are strongly affected by media composition and will be significantly underestimated in normal RPMI. Several components differed between media, including pABA and sodium bicarbonate concentrations, so we cannot directly determine which is responsible. Elevated fitness costs in nature will limit spread of artemisinin (ART) resistance but will also promote evolution of compensatory mutations that restore fitness and can be exploited to maximize selection in laboratory experiments.


Asunto(s)
Antimaláricos , Artemisininas , Antagonistas del Ácido Fólico , Malaria Falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Antagonistas del Ácido Fólico/farmacología , Humanos , Isoleucina , Malaria Falciparum/tratamiento farmacológico , Mutación , Nutrientes , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
12.
J Virol ; 95(7)2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33431557

RESUMEN

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen responsible of coronavirus disease 2019 (COVID-19), has devastated public health services and economies worldwide. Despite global efforts to contain the COVID-19 pandemic, SARS-CoV-2 is now found in over 200 countries and has caused an upward death toll of over 1 million human lives as of November 2020. To date, only one Food and Drug Administration (FDA)-approved therapeutic drug (Remdesivir) and a monoclonal antibody, MAb (Bamlanivimab) are available for the treatment of SARS-CoV-2. As with other viruses, studying SARS-CoV-2 requires the use of secondary approaches to detect the presence of the virus in infected cells. To overcome this limitation, we have generated replication-competent recombinant (r)SARS-CoV-2 expressing fluorescent (Venus or mCherry) or bioluminescent (Nluc) reporter genes. Vero E6 cells infected with reporter-expressing rSARS-CoV-2 can be easily detected via fluorescence or luciferase expression and display a good correlation between reporter gene expression and viral replication. Moreover, rSARS-CoV-2 expressing reporter genes have comparable plaque sizes and growth kinetics to those of wild-type virus, rSARS-CoV-2/WT. We used these reporter-expressing rSARS-CoV-2 to demonstrate their feasibility to identify neutralizing antibodies (NAbs) or antiviral drugs. Our results demonstrate that reporter-expressing rSARS-CoV-2 represent an excellent option to identify therapeutics for the treatment of SARS-CoV-2, where reporter gene expression can be used as valid surrogates to track viral infection. Moreover, the ability to manipulate the viral genome opens the feasibility of generating viruses expressing foreign genes for their use as vaccines for the treatment of SARS-CoV-2 infection.IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen that causes coronavirus disease 2019 (COVID-19), has significantly impacted the human health and economic status worldwide. There is an urgent need to identify effective prophylactics and therapeutics for the treatment of SARS-CoV-2 infection and associated COVID-19 disease. The use of fluorescent- or luciferase-expressing reporter expressing viruses has significantly advanced viral research. Here, we generated recombinant (r)SARS-CoV-2 expressing fluorescent (Venus and mCherry) or luciferase (Nluc) reporter genes and demonstrate that they represent an excellent option to track viral infections in vitro. Importantly, reporter-expressing rSARS-CoV-2 display similar growth kinetics and plaque phenotype that their wild-type counterpart (rSARS-CoV-2/WT), demonstrating their feasibility to identify drugs and/or neutralizing antibodies (NAbs) for the therapeutic treatment of SARS-CoV-2. Henceforth, these reporter-expressing rSARS-CoV-2 can be used to interrogate large libraries of compounds and/or monoclonal antibodies (MAb), in high-throughput screening settings, to identify those with therapeutic potential against SARS-CoV-2.

13.
J Virol ; 95(17): e0040221, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34133899

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen responsible for the current coronavirus disease 2019 (COVID-19) pandemic. As of 19 May 2021, John Hopkins University's COVID-19 tracking platform reported 3.3 million deaths associated with SARS-CoV-2 infection. Currently, the World Health Organization has granted emergency use listing (EUL) to six COVID-19 vaccine candidates. However, much of the pathogenesis observed during SARS-CoV-2 infection remains elusive. To gain insight into the contribution of individual accessory open reading frame (ORF) proteins in SARS-CoV-2 pathogenesis, we used our recently described reverse-genetics system approach to successfully engineer recombinant SARS-CoV-2 (rSARS-CoV-2) constructs; we removed individual viral ORF3a, -6, -7a, -7b, and -8 proteins from them, and we characterized the resulting recombinant viruses in vitro and in vivo. Our results indicate differences in plaque morphology, with ORF-deficient (ΔORF) viruses producing smaller plaques than those of the wild type (rSARS-CoV-2/WT). However, growth kinetics of ΔORF viruses were like those of rSARS-CoV-2/WT. Interestingly, infection of K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mice with the ΔORF rSARS-CoV-2s identified ORF3a and ORF6 as the major contributors of viral pathogenesis, while ΔORF7a, ΔORF7b, and ΔORF8 rSARS-CoV-2s induced pathology comparable to that of rSARS-CoV-2/WT. This study demonstrates the robustness of our reverse-genetics system to generate rSARS-CoV-2 constructs and the major role for ORF3a and ORF6 in viral pathogenesis, providing important information for the generation of attenuated forms of SARS-CoV-2 for their implementation as live attenuated vaccines for the treatment of SARS-CoV-2 infection and associated COVID-19. IMPORTANCE Despite great efforts put forward worldwide to combat the current coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a human health and socioeconomic threat. Insights into the pathogenesis of SARS-CoV-2 and the contribution of viral proteins to disease outcome remain elusive. Our study aims (i) to determine the contribution of SARS-CoV-2 accessory open reading frame (ORF) proteins to viral pathogenesis and disease outcome and (ii) to develop a synergistic platform combining our robust reverse-genetics system to generate recombinant SARS-CoV-2 constructs with a validated rodent model of infection and disease. We demonstrate that SARS-CoV-2 ORF3a and ORF6 contribute to lung pathology and ultimately disease outcome in K18 hACE2 transgenic mice, while ORF7a, ORF7b, and ORF8 have little impact on disease outcome. Moreover, our combinatory platform serves as a foundation for generating attenuated forms of the virus to develop live attenuated vaccines for the treatment of SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Sistemas de Lectura Abierta/inmunología , SARS-CoV-2 , Proteínas Virales , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Animales , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Chlorocebus aethiops , Células HEK293 , Humanos , Ratones , Ratones Transgénicos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Células Vero , Proteínas Virales/genética , Proteínas Virales/inmunología
14.
PLoS Genet ; 15(10): e1008453, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31609965

RESUMEN

Determining the genetic basis of fitness is central to understanding evolution and transmission of microbial pathogens. In human malaria parasites (Plasmodium falciparum), most experimental work on fitness has focused on asexual blood stage parasites, because this stage can be easily cultured, although the transmission of malaria requires both female Anopheles mosquitoes and vertebrate hosts. We explore a powerful approach to identify the genetic determinants of parasite fitness across both invertebrate and vertebrate life-cycle stages of P. falciparum. This combines experimental genetic crosses using humanized mice, with selective whole genome amplification and pooled sequencing to determine genome-wide allele frequencies and identify genomic regions under selection across multiple lifecycle stages. We applied this approach to genetic crosses between artemisinin resistant (ART-R, kelch13-C580Y) and ART-sensitive (ART-S, kelch13-WT) parasites, recently isolated from Southeast Asian patients. Two striking results emerge: we observed (i) a strong genome-wide skew (>80%) towards alleles from the ART-R parent in the mosquito stage, that dropped to ~50% in the blood stage as selfed ART-R parasites were selected against; and (ii) repeatable allele specific skews in blood stage parasites with particularly strong selection (selection coefficient (s) ≤ 0.18/asexual cycle) against alleles from the ART-R parent at loci on chromosome 12 containing MRP2 and chromosome 14 containing ARPS10. This approach robustly identifies selected loci and has strong potential for identifying parasite genes that interact with the mosquito vector or compensatory loci involved in drug resistance.


Asunto(s)
Interacciones Huésped-Parásitos/genética , Estadios del Ciclo de Vida/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Animales , Anopheles/parasitología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Mapeo Cromosómico , Modelos Animales de Enfermedad , Resistencia a Medicamentos/genética , Femenino , Frecuencia de los Genes , Sitios Genéticos , Humanos , Malaria Falciparum/tratamiento farmacológico , Masculino , Ratones , Mosquitos Vectores/parasitología , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Proteínas Ribosómicas/genética , Selección Genética , Quimera por Trasplante
15.
Sensors (Basel) ; 22(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35746395

RESUMEN

Parkinson's disease affects millions worldwide with a large rise in expected burden over the coming decades. More easily accessible tools and techniques to diagnose and monitor Parkinson's disease can improve the quality of life of patients. With the advent of new wearable technologies such as smart rings and watches, this is within reach. However, it is unclear what method for these new technologies may provide the best opportunity to capture the patient-specific severity. This study investigates which locations on the hand can be used to capture and monitor maximal movement/tremor severity. Using a Leap Motion device and custom-made software the volume, velocity, acceleration, and frequency of Parkinson's (n = 55, all right-handed, majority right-sided onset) patients' hand locations (25 joints inclusive of all fingers/thumb and the wrist) were captured simultaneously. Distal locations of the right hand, i.e., the ends of fingers and the wrist showed significant trends (p < 0.05) towards having the largest movement velocities and accelerations. The right hand, compared with the left hand, showed significantly greater volumes, velocities, and accelerations (p < 0.01). Supplementary analysis showed that the volumes, acceleration, and velocities had significant correlations (p < 0.001) with clinical MDS-UPDRS scores, indicating the potential suitability of using these metrics for monitoring disease progression. Maximal movements at the distal hand and wrist area indicate that these locations are best suited to capture hand tremor movements and monitor Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Temblor , Mano , Humanos , Movimiento , Enfermedad de Parkinson/diagnóstico , Calidad de Vida , Temblor/diagnóstico
16.
Mov Disord ; 36(11): 2530-2538, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34374460

RESUMEN

BACKGROUND: Parkinson's disease (PD) may result from the combined effect of multiple etiological factors. The relationship between disease incidence and age, as demonstrated in the cancer literature, can be used to model a multistep pathogenic process, potentially affording unique insights into disease development. OBJECTIVES: We tested whether the observed incidence of PD is consistent with a multistep process, estimated the number of steps required and whether this varies with age, and examined drivers of sex differences in PD incidence. METHODS: Our validated probabilistic modeling process, based on medication prescribing, generated nationwide age- and sex-adjusted PD incidence data spanning 2006-2017. Models of log(incidence) versus log(age) were compared using Bayes factors, to estimate (1) if a linear relationship was present (indicative of a multistep process); (2) the relationship's slope (one less than number of steps); (3) whether slope was lower at younger ages; and (4) whether slope or y-intercept varied with sex. RESULTS: Across >15,000 incident cases of PD, there was a clear linear relationship between log(age) and log(incidence). Evidence was strongest for a model with an initial slope of 5.2 [3.8, 6.4], an inflexion point at age 45, and beyond this a slope of 6.8 [6.4, 7.2]. There was evidence for the intercept varying by sex, but no evidence for slope being sex-dependent. CONCLUSIONS: The age-specific incidence of PD is consistent with a process that develops in multiple, discrete steps - on average six before age 45 and eight after. The model supports theories emphasizing the primacy of environmental factors in driving sex differences in PD incidence. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Modelos Biológicos , Enfermedad de Parkinson , Adulto , Teorema de Bayes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/patología
17.
Mov Disord ; 36(11): 2583-2594, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34288137

RESUMEN

BACKGROUND: Brain structure abnormalities throughout the course of Parkinson's disease have yet to be fully elucidated. OBJECTIVE: Using a multicenter approach and harmonized analysis methods, we aimed to shed light on Parkinson's disease stage-specific profiles of pathology, as suggested by in vivo neuroimaging. METHODS: Individual brain MRI and clinical data from 2357 Parkinson's disease patients and 1182 healthy controls were collected from 19 sources. We analyzed regional cortical thickness, cortical surface area, and subcortical volume using mixed-effects models. Patients grouped according to Hoehn and Yahr stage were compared with age- and sex-matched controls. Within the patient sample, we investigated associations with Montreal Cognitive Assessment score. RESULTS: Overall, patients showed a thinner cortex in 38 of 68 regions compared with controls (dmax  = -0.20, dmin  = -0.09). The bilateral putamen (dleft  = -0.14, dright  = -0.14) and left amygdala (d = -0.13) were smaller in patients, whereas the left thalamus was larger (d = 0.13). Analysis of staging demonstrated an initial presentation of thinner occipital, parietal, and temporal cortices, extending toward rostrally located cortical regions with increased disease severity. From stage 2 and onward, the bilateral putamen and amygdala were consistently smaller with larger differences denoting each increment. Poorer cognition was associated with widespread cortical thinning and lower volumes of core limbic structures. CONCLUSIONS: Our findings offer robust and novel imaging signatures that are generally incremental across but in certain regions specific to disease stages. Our findings highlight the importance of adequately powered multicenter collaborations. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Humanos , Imagen por Resonancia Magnética , Neuroimagen , Enfermedad de Parkinson/complicaciones , Tálamo/patología
18.
Alzheimer Dis Assoc Disord ; 35(4): 350-352, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33769990

RESUMEN

We report a case of familial dementia having some clinical features characteristic of dementia with Lewy bodies, in which a novel mutation Ala275Ser within the presenilin-1 (PSEN1) gene was identified. We review the association of PSEN1 mutation with dementia with Lewy bodies features, noting this to be an uncommonly reported observation.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Humanos , Cuerpos de Lewy , Enfermedad por Cuerpos de Lewy/genética , Mutación , Presenilina-1/genética
19.
Brain ; 143(9): 2673-2680, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32851396

RESUMEN

Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS) is a recently recognized neurodegenerative disease with onset in mid- to late adulthood. The genetic basis for a large proportion of Caucasian patients was recently shown to be the biallelic expansion of a pentanucleotide (AAGGG)n repeat in RFC1. Here, we describe the first instance of CANVAS genetic testing in New Zealand Maori and Cook Island Maori individuals. We show a novel, possibly population-specific CANVAS configuration (AAAGG)10-25(AAGGG)exp, which was the cause of CANVAS in all patients. There were no apparent phenotypic differences compared with European CANVAS patients. Presence of a common disease haplotype among this cohort suggests this novel repeat expansion configuration is a founder effect in this population, which may indicate that CANVAS will be especially prevalent in this group. Haplotype dating estimated the most recent common ancestor at ∼1430 ce. We also show the same core haplotype as previously described, supporting a single origin of the CANVAS mutation.


Asunto(s)
Alelos , Vestibulopatía Bilateral/genética , Ataxia Cerebelosa/genética , Efecto Fundador , Nativos de Hawái y Otras Islas del Pacífico/genética , Proteína de Replicación C/genética , Adulto , Anciano , Vestibulopatía Bilateral/diagnóstico , Vestibulopatía Bilateral/etnología , Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/etnología , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nativos de Hawái y Otras Islas del Pacífico/etnología , Linaje
20.
Mov Disord ; 35(7): 1268-1271, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32691912

RESUMEN

BACKGROUND: Uncontrolled studies have reported associations between later Parkinson's disease onset in women and a history of giving birth, with age at onset delayed by nearly 3 years per child. We tested this association in two independent data sets, but, as a control to test for nonbiological explanations, also included men with PD. METHODS: We analyzed valid cases from the Parkinson's Progressive Markers Initiative incident sample (145 women, 276 men) and a prevalent sample surveyed by the New Zealand Brain Research Institute (210 women, 394 men). RESULTS: The association was present in both women and men in the Parkinson's Progressive Markers Initiative study, and absent in both in the New Zealand Brain Research Institute study. This is consistent with generational differences common to men and women, which confound with age at onset in incident-dominant samples. CONCLUSIONS: Despite being replicable in certain circumstances, associations between childbirth and later PD onset are an artifact of generational cohort differences. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Edad de Inicio , Artefactos , Niño , Estudios de Cohortes , Femenino , Humanos , Masculino , Nueva Zelanda/epidemiología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/epidemiología , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA