Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 163(1): 160-73, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406376

RESUMEN

Focal adhesion kinase (FAK) promotes anti-tumor immune evasion. Specifically, the kinase activity of nuclear-targeted FAK in squamous cell carcinoma (SCC) cells drives exhaustion of CD8(+) T cells and recruitment of regulatory T cells (Tregs) in the tumor microenvironment by regulating chemokine/cytokine and ligand-receptor networks, including via transcription of Ccl5, which is crucial. These changes inhibit antigen-primed cytotoxic CD8(+) T cell activity, permitting growth of FAK-expressing tumors. Mechanistically, nuclear FAK is associated with chromatin and exists in complex with transcription factors and their upstream regulators that control Ccl5 expression. Furthermore, FAK's immuno-modulatory nuclear activities may be specific to cancerous squamous epithelial cells, as normal keratinocytes do not have nuclear FAK. Finally, we show that a small-molecule FAK kinase inhibitor, VS-4718, which is currently in clinical development, also drives depletion of Tregs and promotes a CD8(+) T cell-mediated anti-tumor response. Therefore, FAK inhibitors may trigger immune-mediated tumor regression, providing previously unrecognized therapeutic opportunities.


Asunto(s)
Carcinoma de Células Escamosas/inmunología , Quimiocina CCL5/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias Cutáneas/inmunología , Linfocitos T Reguladores/inmunología , Escape del Tumor , Aminopiridinas/administración & dosificación , Animales , Carcinoma de Células Escamosas/metabolismo , Quimiocina CCL5/inmunología , Modelos Animales de Enfermedad , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Desnudos , Neoplasias Cutáneas/metabolismo , Transcripción Genética
2.
Immunity ; 44(5): 1114-26, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27192577

RESUMEN

Regulatory T (Treg) cells expressing Foxp3 transcripton factor are essential for immune homeostasis. They arise in the thymus as a separate lineage from conventional CD4(+)Foxp3(-) T (Tconv) cells. Here, we show that the thymic development of Treg cells depends on the expression of their endogenous cognate self-antigen. The formation of these cells was impaired in mice lacking this self-antigen, while Tconv cell development was not negatively affected. Thymus-derived Treg cells were selected by self-antigens in a specific manner, while autoreactive Tconv cells were produced through degenerate recognition of distinct antigens. These distinct modes of development were associated with the expression of T cell receptor of higher functional avidity for self-antigen by Treg cells than Tconv cells, a difference subsequently essential for the control of autoimmunity. Our study documents how self-antigens define the repertoire of thymus-derived Treg cells to subsequently endow this cell type with the capacity to undermine autoimmune attack.


Asunto(s)
Antígeno CTLA-4/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Glicoproteína Mielina-Oligodendrócito/metabolismo , Subgrupos de Linfocitos T/fisiología , Linfocitos T Reguladores/fisiología , Timo/inmunología , Animales , Autoantígenos/inmunología , Antígeno CTLA-4/genética , Células Cultivadas , Selección Clonal Mediada por Antígenos , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T/genética
3.
Eur J Immunol ; 52(8): 1335-1349, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35579560

RESUMEN

CD4+ FOXP3+ Tregs are currently explored to develop cell therapies against immune-mediated disorders, with an increasing focus on antigen receptor-engineered Tregs. Deciphering their mode of action is necessary to identify the strengths and limits of this approach. Here, we addressed this issue in an autoimmune disease of the CNS, EAE. Following disease induction, autoreactive Tregs upregulated LAG-3 and CTLA-4 in LNs, while IL-10 and amphiregulin (AREG) were increased in CNS Tregs. Using genetic approaches, we demonstrated that IL-10, CTLA-4, and LAG-3 were nonredundantly required for the protective function of antigen receptor-engineered Tregs against EAE in cell therapy whereas AREG was dispensable. Treg-derived IL-10 and CTLA-4 were both required to suppress acute autoreactive CD4+ T-cell activation, which correlated with disease control. These molecules also affected the accumulation in the recipients of engineered Tregs themselves, underlying complex roles for these molecules. Noteworthy, despite the persistence of the transferred Tregs and their protective effect, autoreactive T cells eventually accumulated in the spleen of treated mice. In conclusion, this study highlights the remarkable power of antigen receptor-engineered Tregs to appropriately provide multiple suppressive factors nonredundantly necessary to prevent autoimmune attacks.


Asunto(s)
Autoinmunidad , Enfermedades del Sistema Inmune , Animales , Antígeno CTLA-4 , Tratamiento Basado en Trasplante de Células y Tejidos , Factores de Transcripción Forkhead/genética , Interleucina-10 , Ratones , Receptores de Antígenos , Linfocitos T Reguladores
4.
Neuropathol Appl Neurobiol ; 49(1): e12851, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36181265

RESUMEN

AIMS: Axonal injury in multiple sclerosis (MS) and experimental models is most frequently detected in acutely demyelinating lesions. We recently reported a compensatory neuronal response, where mitochondria move to the acutely demyelinated axon and increase the mitochondrial content following lysolecithin-induced demyelination. We termed this homeostatic phenomenon, which is also evident in MS, the axonal response of mitochondria to demyelination (ARMD). The aim of this study is to determine whether ARMD is consistently evident in experimental demyelination and how its perturbation relates to axonal injury. METHODS: In the present study, we assessed axonal mitochondrial content as well as axonal mitochondrial respiratory chain complex IV activity (cytochrome c oxidase or COX) of axons and related these to axonal injury in nine different experimental disease models. We used immunofluorescent histochemistry as well as sequential COX histochemistry followed by immunofluorescent labelling of mitochondria and axons. RESULTS: We found ARMD a consistent and robust phenomenon in all experimental disease models. The increase in mitochondrial content within demyelinated axons, however, was not always accompanied by a proportionate increase in complex IV activity, particularly in highly inflammatory models such as experimental autoimmune encephalomyelitis (EAE). Axonal complex IV activity inversely correlated with the extent of axonal injury in experimental disease models. CONCLUSIONS: Our findings indicate that ARMD is a consistent and prominent feature and emphasise the importance of complex IV activity in the context of ARMD, especially in autoimmune inflammatory demyelination, paving the way for the development of novel neuroprotective therapies.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Esclerosis Múltiple/patología , Axones/patología , Encefalomielitis Autoinmune Experimental/patología , Neuronas/patología , Mitocondrias/patología
5.
Am J Pathol ; 190(6): 1224-1235, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32201264

RESUMEN

Intratracheal instillation of apoptotic cells enhances resolution of experimental lung inflammation by incompletely understood mechanisms. We report that this intervention induces functional regulatory T lymphocytes (Tregs) in mouse lung experimentally inflamed by intratracheal administration of lipopolysaccharide. Selective depletion demonstrated that Tregs were necessary for maximal apoptotic cell-directed enhancement of resolution, and adoptive transfer of additional Tregs was sufficient to promote resolution without administering apoptotic cells. After intratracheal instillation, labeled apoptotic cells were observed in most CD11c+CD103+ myeloid dendritic cells migrating to mediastinal draining lymph nodes and bearing migratory and immunoregulatory markers, including increased CCR7 and ß8 integrin (ITGB8) expression. In mice deleted for αv integrin in the myeloid line to reduce phagocytosis of dying cells by CD103+ dendritic cells, exogenous apoptotic cells failed to induce transforming growth factor-ß1 expression or Treg accumulation and failed to enhance resolution of lipopolysaccharide-induced lung inflammation. We conclude that in murine lung, myeloid phagocytes encountering apoptotic cells can deploy αv integrin-mediated mechanisms to induce Tregs and enhance resolution of acute inflammation.


Asunto(s)
Apoptosis/fisiología , Integrina alfaV/metabolismo , Neumonía/metabolismo , Linfocitos T Reguladores/metabolismo , Traslado Adoptivo , Animales , Factores de Transcripción Forkhead/metabolismo , Activación de Linfocitos , Depleción Linfocítica , Ratones , Fagocitosis/fisiología , Neumonía/patología
6.
Eur J Immunol ; 49(1): 112-120, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30485411

RESUMEN

T cell adaptation is an important peripheral tolerogenic process which ensures that the T cell population can respond effectively to pathogens but remains tolerant to self-antigens. We probed the mechanisms of T cell adaptation using an experimental autoimmune encephalomyelitis (EAE) model in which the fate of autopathogenic T cells could be followed. We demonstrated that immunisation with a high dose of myelin basic protein (MBP) peptide and complete Freund's adjuvant failed to effectively initiate EAE, in contrast to low dose MBP peptide immunisation which readily induced disease. The proportion of autopathogenic CD4+ T cells in the central nervous system (CNS) of mice immunised with a high dose of MBP peptide was not significantly different to mice immunised with a low dose. However, autopathogenic T cells in mice immunised with high dose MBP peptide had an unresponsive phenotype in ex vivo recall assays. Importantly, whilst expression of PD-1 was increased on adapted CD4+ T cells within the CNS, loss of PD-1 function did not prevent the development of the unresponsive state. The lack of a role for PD-1 in the acquisition of the adapted state stands in striking contrast to the reported functional importance of PD-1 in T cell unresponsiveness in other disease models.


Asunto(s)
Sistema Nervioso Central/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T/inmunología , Inmunidad Adaptativa , Animales , Autoantígenos/inmunología , Células Cultivadas , Anergia Clonal , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Básica de Mielina/inmunología , Fragmentos de Péptidos/inmunología , Regulación hacia Arriba
7.
Acta Neuropathol ; 140(2): 143-167, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32572598

RESUMEN

Axonal loss is the key pathological substrate of neurological disability in demyelinating disorders, including multiple sclerosis (MS). However, the consequences of demyelination on neuronal and axonal biology are poorly understood. The abundance of mitochondria in demyelinated axons in MS raises the possibility that increased mitochondrial content serves as a compensatory response to demyelination. Here, we show that upon demyelination mitochondria move from the neuronal cell body to the demyelinated axon, increasing axonal mitochondrial content, which we term the axonal response of mitochondria to demyelination (ARMD). However, following demyelination axons degenerate before the homeostatic ARMD reaches its peak. Enhancement of ARMD, by targeting mitochondrial biogenesis and mitochondrial transport from the cell body to axon, protects acutely demyelinated axons from degeneration. To determine the relevance of ARMD to disease state, we examined MS autopsy tissue and found a positive correlation between mitochondrial content in demyelinated dorsal column axons and cytochrome c oxidase (complex IV) deficiency in dorsal root ganglia (DRG) neuronal cell bodies. We experimentally demyelinated DRG neuron-specific complex IV deficient mice, as established disease models do not recapitulate complex IV deficiency in neurons, and found that these mice are able to demonstrate ARMD, despite the mitochondrial perturbation. Enhancement of mitochondrial dynamics in complex IV deficient neurons protects the axon upon demyelination. Consequently, increased mobilisation of mitochondria from the neuronal cell body to the axon is a novel neuroprotective strategy for the vulnerable, acutely demyelinated axon. We propose that promoting ARMD is likely to be a crucial preceding step for implementing potential regenerative strategies for demyelinating disorders.


Asunto(s)
Enfermedades Desmielinizantes/patología , Mitocondrias/patología , Esclerosis Múltiple/patología , Degeneración Nerviosa/patología , Neuroprotección/fisiología , Animales , Axones/patología , Humanos , Ratones , Biogénesis de Organelos
8.
J Immunol ; 200(3): 1169-1187, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29263216

RESUMEN

The disposal of apoptotic bodies by professional phagocytes is crucial to effective inflammation resolution. Our ability to improve the disposal of apoptotic bodies by professional phagocytes is impaired by a limited understanding of the molecular mechanisms that regulate the engulfment and digestion of the efferocytic cargo. Macrophages are professional phagocytes necessary for liver inflammation, fibrosis, and resolution, switching their phenotype from proinflammatory to restorative. Using sterile liver injury models, we show that the STAT3-IL-10-IL-6 axis is a positive regulator of macrophage efferocytosis, survival, and phenotypic conversion, directly linking debris engulfment to tissue repair.


Asunto(s)
Interleucina-10/metabolismo , Interleucina-6/metabolismo , Cirrosis Hepática/patología , Hígado/lesiones , Macrófagos/inmunología , Fagocitosis/inmunología , Factor de Transcripción STAT3/metabolismo , Traslado Adoptivo , Animales , Apoptosis/inmunología , Humanos , Hígado/patología , Macrófagos/trasplante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necrosis/inmunología , Regeneración/fisiología , Pez Cebra/embriología
9.
Nature ; 507(7492): 366-370, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24572363

RESUMEN

B lymphocytes have critical roles as positive and negative regulators of immunity. Their inhibitory function has been associated primarily with interleukin 10 (IL-10) because B-cell-derived IL-10 can protect against autoimmune disease and increase susceptibility to pathogens. Here we identify IL-35-producing B cells as key players in the negative regulation of immunity. Mice in which only B cells did not express IL-35 lost their ability to recover from the T-cell-mediated demyelinating autoimmune disease experimental autoimmune encephalomyelitis (EAE). In contrast, these mice displayed a markedly improved resistance to infection with the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as shown by their superior containment of the bacterial growth and their prolonged survival after primary infection, and upon secondary challenge, compared to control mice. The increased immunity found in mice lacking IL-35 production by B cells was associated with a higher activation of macrophages and inflammatory T cells, as well as an increased function of B cells as antigen-presenting cells (APCs). During Salmonella infection, IL-35- and IL-10-producing B cells corresponded to two largely distinct sets of surface-IgM(+)CD138(hi)TACI(+)CXCR4(+)CD1d(int)Tim1(int) plasma cells expressing the transcription factor Blimp1 (also known as Prdm1). During EAE, CD138(+) plasma cells were also the main source of B-cell-derived IL-35 and IL-10. Collectively, our data show the importance of IL-35-producing B cells in regulation of immunity and highlight IL-35 production by B cells as a potential therapeutic target for autoimmune and infectious diseases. This study reveals the central role of activated B cells, particularly plasma cells, and their production of cytokines in the regulation of immune responses in health and disease.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Inmunidad/inmunología , Interleucinas/metabolismo , Infecciones por Salmonella/inmunología , Animales , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Antígenos CD40/inmunología , Femenino , Humanos , Interleucina-10/metabolismo , Interleucinas/inmunología , Activación de Linfocitos , Macrófagos/citología , Macrófagos/inmunología , Masculino , Ratones , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Infecciones por Salmonella/microbiología , Linfocitos T/inmunología , Receptor Toll-Like 4/inmunología
10.
Nucleic Acids Res ; 46(D1): D1091-D1106, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29149325

RESUMEN

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, www.guidetopharmacology.org) and its precursor IUPHAR-DB, have captured expert-curated interactions between targets and ligands from selected papers in pharmacology and drug discovery since 2003. This resource continues to be developed in conjunction with the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS). As previously described, our unique model of content selection and quality control is based on 96 target-class subcommittees comprising 512 scientists collaborating with in-house curators. This update describes content expansion, new features and interoperability improvements introduced in the 10 releases since August 2015. Our relationship matrix now describes ∼9000 ligands, ∼15 000 binding constants, ∼6000 papers and ∼1700 human proteins. As an important addition, we also introduce our newly funded project for the Guide to IMMUNOPHARMACOLOGY (GtoImmuPdb, www.guidetoimmunopharmacology.org). This has been 'forked' from the well-established GtoPdb data model and expanded into new types of data related to the immune system and inflammatory processes. This includes new ligands, targets, pathways, cell types and diseases for which we are recruiting new IUPHAR expert committees. Designed as an immunopharmacological gateway, it also has an emphasis on potential therapeutic interventions.


Asunto(s)
Bases de Datos Farmacéuticas , Fenómenos del Sistema Inmunológico/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Animales , Humanos , Enfermedades del Sistema Inmune/tratamiento farmacológico , Ligandos , Farmacología , Proteínas/efectos de los fármacos
11.
J Allergy Clin Immunol ; 141(1): 152-162, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28583370

RESUMEN

BACKGROUND: Atopic dermatitis (AD) and allergic contact dermatitis (ACD) are both forms of eczema and are common inflammatory skin diseases with a central role of T cell-derived IL-22 in their pathogenesis. Although prostaglandin (PG) E2 is known to promote inflammation, little is known about its role in processes related to AD and ACD development, including IL-22 upregulation. OBJECTIVES: We sought to investigate whether PGE2 has a role in IL-22 induction and development of ACD, which has increased prevalence in patients with AD. METHODS: T-cell cultures and in vivo sensitization of mice with haptens were used to assess the role of PGE2 in IL-22 production. The involvement of PGE2 receptors and their downstream signals was also examined. The effects of PGE2 were evaluated by using the oxazolone-induced ACD mouse model. The relationship of PGE2 and IL-22 signaling pathways in skin inflammation were also investigated by using genomic profiling in human lesional AD skin. RESULTS: PGE2 induces IL-22 from T cells through its receptors, E prostanoid receptor (EP) 2 and EP4, and involves cyclic AMP signaling. Selective deletion of EP4 in T cells prevents hapten-induced IL-22 production in vivo, and limits atopic-like skin inflammation in the oxazolone-induced ACD model. Moreover, both PGE2 and IL-22 pathway genes were coordinately upregulated in human AD lesional skin but were at less than significant detection levels after corticosteroid or UVB treatments. CONCLUSIONS: Our results define a crucial role for PGE2 in promoting ACD by facilitating IL-22 production from T cells.


Asunto(s)
Dermatitis Alérgica por Contacto/inmunología , Dinoprostona/inmunología , Interleucinas/inmunología , Piel/inmunología , Linfocitos T/inmunología , Animales , Dermatitis Alérgica por Contacto/genética , Dermatitis Alérgica por Contacto/patología , Dinoprostona/genética , Humanos , Interleucinas/genética , Ratones , Ratones Noqueados , Piel/patología , Linfocitos T/patología , Interleucina-22
12.
Thorax ; 73(11): 1081-1084, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29574419

RESUMEN

Acute lung injury is a neutrophil-dominant, life-threatening disease without effective therapies and better understanding of the pathophysiological mechanisms involved is an urgent need. Here we show that interleukin (IL)-22 is produced from innate lymphoid cells (ILC) and is responsible for suppression of experimental lung neutrophilic inflammation. Blocking prostaglandin E2 (PGE2) synthesis reduces lung ILCs and IL-22 production, resulting in exacerbation of lung neutrophilic inflammation. In contrast, activation of the PGE2 receptor EP4 prevents acute lung inflammation. We thus demonstrate a mechanism for production of innate IL-22 in the lung during acute injury, highlighting potential therapeutic strategies for control of lung neutrophilic inflammation by targeting the PGE2/ILC/IL-22 axis.


Asunto(s)
Dinoprostona/farmacología , Inmunidad Innata/efectos de los fármacos , Interleucinas/biosíntesis , Linfocitos/metabolismo , Neumonía/prevención & control , Animales , Modelos Animales de Enfermedad , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Neumonía/inmunología , Neumonía/metabolismo , Interleucina-22
13.
Immunol Cell Biol ; 96(10): 1049-1059, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29758102

RESUMEN

Inflammatory bowel disease (IBD) is a condition of chronic inflammatory intestinal disorder with increasing prevalence but limited effective therapies. The purine metabolic pathway is involved in various inflammatory processes including IBD. However, the mechanisms through which purine metabolism modulates IBD remain to be established. Here, we found that mucosal expression of genes involved in the purine metabolic pathway is altered in patients with active ulcerative colitis (UC), which is associated with elevated gene expression signatures of the group 3 innate lymphoid cell (ILC3)-interleukin (IL)-22 pathway. In mice, blockade of ectonucleotidases (NTPDases), critical enzymes for purine metabolism by hydrolysis of extracellular adenosine 5'-triphosphate (eATP) into adenosine, exacerbates dextran-sulfate sodium-induced intestinal injury. This exacerbation of colitis is associated with reduction of colonic IL-22-producing ILC3s, which afford essential protection against intestinal inflammation, and is rescued by exogenous IL-22. Mechanistically, activation of ILC3s for IL-22 production is reciprocally mediated by eATP and adenosine. These findings reveal that the NTPDase-mediated balance between eATP and adenosine regulates ILC3 cell function to provide protection against intestinal injury and suggest potential therapeutic strategies for treating IBD by targeting the purine-ILC3 axis.


Asunto(s)
Colitis/etiología , Colitis/metabolismo , Inmunidad Innata , Linfocitos/inmunología , Linfocitos/metabolismo , Purinas/metabolismo , Animales , Biomarcadores , Colitis/patología , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Citometría de Flujo , Perfilación de la Expresión Génica , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Noqueados , Transcriptoma
14.
Immunol Cell Biol ; 95(5): 484-490, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28169287

RESUMEN

CD4+Foxp3+ T regulatory (Treg) cells provide a key defence against inflammatory disease, but also have an ability to produce pro-inflammatory cytokines. The evidence for these two possibilities in multiple sclerosis (MS) is controversial. However, this has largely been based on studies of circulating Treg cells derived from peripheral blood, rather than the central nervous system. We show that Foxp3+ cells in the brains of MS patients predominantly produce interleukin-10 (IL-10) and show high expression of the IL-33 receptor ST2 (associated with potent Treg function), indicating that Treg in the inflamed brain maintain their suppressive function.


Asunto(s)
Encéfalo/patología , Factores de Transcripción Forkhead/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-10/biosíntesis , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/patología , Animales , Antígenos CD4/metabolismo , Femenino , Humanos , Ratones Endogámicos C57BL , Linfocitos T Reguladores , Factor de Necrosis Tumoral alfa/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(8): E784-93, 2014 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-24516158

RESUMEN

Peptide immunotherapy (PIT) offers realistic prospects for the treatment of allergic diseases, including allergic asthma. Much is understood of the behavior of naive T cells in response to PIT. However, treatment of patients with ongoing allergic disease requires detailed understanding of the responses of allergen-experienced T cells. CD62L expression by allergen-experienced T cells corresponds to effector/effector memory (CD62L(lo)) and central memory (CD62L(hi)) subsets, which vary with allergen exposure (e.g., during, or out with, pollen season). The efficacy of PIT on different T helper 2 (Th2) cell memory populations is unknown. We developed a murine model of PIT in allergic airway inflammation (AAI) driven by adoptively transferred, traceable ovalbumin-experienced Th2 cells. PIT effectively suppressed AAI driven by unfractionated Th2 cells. Selective transfer of CD62L(hi) and CD62L(lo) Th2 cells revealed that these two populations behaved differently from one another and from previously characterized (early deletional) responses of naive CD4(+) T cells to PIT. Most notably, allergen-reactive CD62L(lo) Th2 cells were long-lived within the lung after PIT, before allergen challenge, in contrast to CD62L(hi) Th2 cells. Despite this, PIT was most potent against CD62L(lo) Th2 cells in protecting from AAI, impairing their ability to produce Th2 cytokines, whereas this capacity was heightened in PIT-treated CD62L(hi) Th2 cells. We conclude that Th2 cells do not undergo an early deletional form of tolerance after PIT. Moreover, memory Th2 subsets respond differently to PIT. These findings have implications for the clinical translation of PIT in different allergic scenarios.


Asunto(s)
Hipersensibilidad/tratamiento farmacológico , Hipersensibilidad/inmunología , Memoria Inmunológica/inmunología , Inmunoterapia/métodos , Ovalbúmina/inmunología , Fragmentos de Péptidos/inmunología , Células Th2/inmunología , Animales , Lavado Broncoalveolar , Citometría de Flujo , Hipersensibilidad/patología , Selectina L/inmunología , Pulmón/patología , Ratones , Ratones Transgénicos , Ovalbúmina/uso terapéutico , Fragmentos de Péptidos/uso terapéutico , Células Th2/citología
16.
Lancet ; 385 Suppl 1: S50, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-26312872

RESUMEN

BACKGROUND: Helminths infect more than a quarter of the world's population. Their success as parasites is the result of active immunomodulation of the host immune response, which can have benefits for the host, particularly in suppressing harmful allergic and autoimmune responses. Accordingly, we tested the hypothesis that helminth infection reduces the immune response to allograft transplantation. METHODS: C57BL/6 mice were implanted with a subcutaneous minipump that delivered a continuous infusion of secreted products from the model mouse intestinal parasite, Heligmosomoides polygyrus (equivalent to 7 µg of protein per day). Simultaneously, fully allogeneic skin grafts from BALB/c donors were performed. 7 days later, lymphocytes were isolated from allograft draining lymph nodes and analysed by flow cytometry. FINDINGS: Flow cytometric analysis showed a 41·7% increase in the mean percentage of CD4+CD25+Foxp3+ regulatory T cells (of total CD4 cells) from a baseline of 8·1% (95% CI 7·4-8·8) in untreated mice to 11·5% (8·8-14·2) in the treatment group (p=0·0085). Treatment with parasite products also increased mean expression of the regulatory cell surface receptor PD1 by 62·2% in the effector CD4 T-cell population from a baseline of 7·7% (5·7-9·6) to 12·5% (7·5-17·4) (p=0·03). INTERPRETATION: The results show that helminth-derived products can powerfully induce regulatory immunological mechanisms in the presence of a fully allogeneic transplant. Identification of the specific mechanisms involved in suppression of allograft rejection by helminth parasites could lead towards development of safe and effective novel therapeutic strategies. FUNDING: Wellcome Trust.

17.
Immunology ; 146(2): 194-205, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26190495

RESUMEN

Foxp3(+) regulatory T (Treg) cells prevent the development of autoimmunity and immunopathology, as well as maintaining homeostasis and tolerance to commensal microorganisms. The suppressive activity of Treg cells is their defining characteristic, generating great interest in their therapeutic potential. However, suppressive and effector functions are not entirely exclusive. Considerable evidence points to the ability of supposedly anti-inflammatory Foxp3-expressing Treg cells to also express transcription factors that have been characterized as cardinal drivers of T effector cell function. We will consider the mounting evidence that Treg cells can function in non-suppressive capacities and review the impetus for this functional change, its relevance to developing immune and autoimmune responses and its significance to the development of Treg-based therapies.


Asunto(s)
Citocinas/inmunología , Factores de Transcripción Forkhead/inmunología , Mediadores de Inflamación/inmunología , Inflamación/inmunología , Receptores de Citocinas/inmunología , Linfocitos T Reguladores/inmunología , Factores de Transcripción/inmunología , Animales , Citocinas/genética , Citocinas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Inmunofenotipificación , Inflamación/genética , Inflamación/metabolismo , Inflamación/terapia , Mediadores de Inflamación/metabolismo , Fenotipo , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Eur J Immunol ; 44(11): 3342-52, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25168419

RESUMEN

Interest in manipulating the immunosuppressive powers of Foxp3-expressing T regulatory cells as an immunotherapy has been tempered by their reported ability to produce proinflammatory cytokines when manipulated in vitro, or in vivo. Understanding processes that can limit this potentially deleterious effect of Treg cells in a therapeutic setting is therefore important. Here, we have studied this using induced (i) Treg cells in which de novo Foxp3 expression is driven by TCR-stimulation in vitro in the presence of TGF-ß. We show that iTreg cells can produce significant amounts of three proinflammatory cytokines (IFN-γ, GM-CSF and TNF-α) upon secondary TCR stimulation. GM-CSF is a critical T-cell derived cytokine for the induction of EAE in mice. Despite their apparent capacity to produce GM-CSF, myelin autoantigen-responsive iTreg cells were unable to provoke EAE. Instead, they maintained strong suppressive function in vivo, preventing EAE induction by their CD4+ Foxp3- counterparts. We identified that although iTreg cells maintained the ability to produce IFN-γ and TNF-α in vivo, their ability to produce GM-CSF was selectively degraded upon antigen stimulation under inflammatory conditions. Furthermore, we show that IL-6 and IL-27 individually, or IL-2 and TGF-ß in combination, can mediate the selective loss of GM-CSF production by iTreg cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/biosíntesis , Inflamación/inmunología , Linfocitos T Reguladores/inmunología , Animales , Factores de Transcripción Forkhead/biosíntesis , Inmunoterapia , Interferón gamma/biosíntesis , Interferón gamma/genética , Interleucina-12/farmacología , Interleucina-2/farmacología , Interleucina-6/farmacología , Interleucinas/farmacología , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/inmunología , Células TH1 , Factor de Crecimiento Transformador beta/farmacología , Factor de Necrosis Tumoral alfa/biosíntesis
19.
J Immunol ; 190(3): 881-5, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23267024

RESUMEN

Mice lacking IL-6 are resistant to autoimmune diseases, such as experimental autoimmune encephalomyelitis (EAE), which is driven by CNS-reactive CD4(+) T cells. There are multiple cellular sources of IL-6, but the critical source in EAE has been uncertain. Using cell-specific IL-6 deficiency in models of EAE induced by active immunization, passive transfer, T cell transfer, and dendritic cell transfer, we show that neither the pathogenic T cells nor CNS-resident cells are required to produce IL-6. Instead, the requirement for IL-6 was restricted to the early stages of T cell activation and was entirely controlled by dendritic cell-derived IL-6. This reflected the loss of IL-6R expression by T cells over time. These data explain why blockade of IL-6R only achieves protection against EAE if used at the time of T cell priming. The implications for therapeutic manipulation of IL-6 signaling in human T cell-driven autoimmune conditions are considered.


Asunto(s)
Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Interleucina-6/inmunología , Traslado Adoptivo , Animales , Autoantígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/trasplante , Cruzamientos Genéticos , Células Dendríticas/metabolismo , Células Dendríticas/trasplante , Antígenos de Histocompatibilidad Clase II/inmunología , Inmunización Pasiva , Interleucina-6/deficiencia , Interleucina-6/metabolismo , Activación de Linfocitos , Linfocinas/análisis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Básica de Mielina/inmunología , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/inmunología , Receptores de Interleucina-6/biosíntesis , Receptores de Interleucina-6/inmunología , Organismos Libres de Patógenos Específicos , Especificidad del Receptor de Antígeno de Linfocitos T
20.
Proc Natl Acad Sci U S A ; 109(35): 14134-9, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891339

RESUMEN

Reestablishing self-tolerance in autoimmunity is thought to depend on self-reactive regulatory T cells (Tregs). Exploiting these antigen-specific regulators is hampered by the obscure nature of disease-relevant autoantigens. We have uncovered potent disease-suppressive Tregs recognizing Heat Shock Protein (Hsp) 70 self-antigens, enabling selective activity in inflamed tissues. Hsp70 is a major contributor to the MHC class II ligandome. Here we show that a conserved Hsp70 epitope (B29) is present in murine MHC class II and that upon transfer, B29-induced CD4(+)CD25(+)Foxp3(+) T cells suppress established proteoglycan-induced arthritis in mice. These self-antigen-specific Tregs were activated in vivo, and when using Lymphocyte Activation Gene-3 as a selection marker, as few as 4,000 cells sufficed. Furthermore, depletion of transferred Tregs abrogated disease suppression. Transferred cells exhibited a stable phenotype and were found in joints and draining lymph nodes up to 2 mo after transfer. Given that (i) B29 administration by itself suppressed disease, (ii) our findings were made with wild-type (T-cell receptor nontransgenic) Tregs, and (iii) the B29 human homolog is presented by HLA class II, we are nearing translation of antigen-specific Treg activation as a promising intervention for chronic inflammatory diseases.


Asunto(s)
Artritis/inmunología , Artritis/terapia , Epítopos de Linfocito T/inmunología , Proteínas HSP70 de Choque Térmico/farmacología , Tolerancia Inmunológica/inmunología , Linfocitos T Reguladores/inmunología , Administración Intranasal , Traslado Adoptivo/métodos , Animales , Artritis/metabolismo , Autoantígenos/inmunología , Autoantígenos/metabolismo , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/terapia , Autoinmunidad/inmunología , Epítopos de Linfocito T/metabolismo , Proteínas HSP70 de Choque Térmico/inmunología , Proteínas HSP70 de Choque Térmico/metabolismo , Inmunización/métodos , Inmunoterapia Adoptiva/métodos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos BALB C , Estrés Fisiológico/inmunología , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA