Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunol Lett ; 260: 73-80, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315848

RESUMEN

Shrimp is among the most sensitizing food allergens and has been associated with many anaphylaxis reactions. However, there is still a shortage of studies that enable a systematic understanding of this disease and the investigation of new therapeutic approaches. This study aimed to develop a new experimental model of shrimp allergy that could enable the evaluation of new prophylactic treatments. BALB/c mice were subcutaneously sensitized with 100 µg of shrimp proteins of Litopenaeus vannamei adsorbed in 1 mg of aluminum hydroxide on day 0, and a booster (100 µg of shrimp proteins only) on day 14. The oral challenge protocol was based on the addition of 5 mg/ml of shrimp proteins to water from day 21 to day 35. Analysis of shrimp extract content detected at least 4 of the major allergens reported to L. vannamei. In response to the sensitization, allergic mice showed significantly enhanced IL-4 and IL-10 production in restimulated cervical draining lymph node cells. High detection of serum anti-shrimp IgE and IgG1 suggested the development of allergies to shrimp while Passive Cutaneous Anaphylaxis assay revealed an IgE-mediated response. Immunoblotting analysis revealed that Allergic mice developed antibodies to multiple antigens present in the shrimp extract. These observations were supported by the detection of anti-shrimp IgA production in intestinal lavage samples and morphometric intestinal mucosal changes. Therefore, this experimental protocol can be a tool to evaluate prophylactic and therapeutic approaches.


Asunto(s)
Anafilaxia , Hipersensibilidad a los Alimentos , Animales , Ratones , Inmunoglobulina E , Alérgenos , Extractos Vegetales
2.
Front Immunol ; 12: 647987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248935

RESUMEN

Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1 inflammatory response characterized by IFN-γ production. Even in the absence of parasites, lesions result from a severe inflammatory response in which inflammatory cytokines play an important role. Different approaches have been used to evaluate the therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are evolutionarily preserved from bacteria to humans, highly expressed under inflammatory conditions and described as immunodominant antigens. Tolerance induced by the oral administration of Hsp65 is capable of suppressing inflammation and inducing differentiation in regulatory cells, and has been successfully demonstrated in several experimental models of autoimmune and inflammatory diseases. We initially administered recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order to verify its immunomodulatory potential in the inflammatory response arising from L. braziliensis. Using this experimental approach, we demonstrated that the oral administration of a recombinant L. lactis strain, which produces and secretes Hsp65 from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-α-Palmitoyl-S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In addition, recombinant L. lactis administered 4 weeks after infection was observed to decrease lesion size, as well as the number of parasites, and produced a higher IL-10 production and decrease IFN-γ secretion. Together, these results indicate that Hsp65-producing L. lactis can be considered as an alternative candidate for treatment in both autoimmune diseases, as well as in chronic infections that cause inflammatory disease.


Asunto(s)
Proteínas Bacterianas/administración & dosificación , Proteínas Bacterianas/metabolismo , Chaperonina 60/administración & dosificación , Chaperonina 60/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Lactococcus lactis/metabolismo , Leishmania braziliensis/efectos de los fármacos , Leishmaniasis Cutánea/tratamiento farmacológico , Mycobacterium leprae/enzimología , Administración Oral , Animales , Proteínas Bacterianas/genética , Chaperonina 60/genética , Citocinas/metabolismo , Femenino , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Lactococcus lactis/genética , Leishmaniasis Cutánea/inmunología , Leishmaniasis Cutánea/parasitología , Ratones , Ratones Endogámicos BALB C , Organismos Modificados Genéticamente/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología
3.
Immunol Lett, v. 260, p. 73-80, jun. 2023
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-4946

RESUMEN

Shrimp is among the most sensitizing food allergens and has been associated with many anaphylaxis reactions. However, there is still a shortage of studies that enable a systematic understanding of this disease and the investigation of new therapeutic approaches. This study aimed to develop a new experimental model of shrimp allergy that could enable the evaluation of new prophylactic treatments. BALB/c mice were subcutaneously sensitized with 100 μg of shrimp proteins of Litopenaeus vannamei adsorbed in 1 mg of aluminum hydroxide on day 0, and a booster (100 µg of shrimp proteins only) on day 14. The oral challenge protocol was based on the addition of 5 mg/ml of shrimp proteins to water from day 21 to day 35. Analysis of shrimp extract content detected at least 4 of the major allergens reported to L. vannamei. In response to the sensitization, allergic mice showed significantly enhanced IL-4 and IL-10 production in restimulated cervical draining lymph node cells. High detection of serum anti-shrimp IgE and IgG1 suggested the development of allergies to shrimp while Passive Cutaneous Anaphylaxis assay revealed an IgE-mediated response. Immunoblotting analysis revealed that Allergic mice developed antibodies to multiple antigens present in the shrimp extract. These observations were supported by the detection of anti-shrimp IgA production in intestinal lavage samples and morphometric intestinal mucosal changes. Therefore, this experimental protocol can be a tool to evaluate prophylactic and therapeutic approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA