Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 5, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172908

RESUMEN

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is a viral disease with worldwide distribution and an enormous economic impact. To control PRRS virus (PRRSV) infection, modified live vaccines (MLVs) are widely used in the field, mainly administered via an intramuscular (IM) route. Currently, some MLVs are authorized for intradermal (ID) administration, which has many practical and welfare advantages. The objectives of the study were to compare the immune responses (systemic in blood and mucosal in lungs) and vaccine efficacy in preventing challenge strain transmission after IM or needle-free ID immunization of piglets with an MLV against PRRSV-1 (MLV1). METHODS: Groups of sixteen 5-week-old specific pathogen-free piglets were vaccinated with Porcilis PRRS® (MSD) either by an IM (V+ IM) or ID route (V+ ID) using an IDAL®3G device or kept unvaccinated (V-). Four weeks after vaccination, in each group, 8 out of the 16 piglets were challenged intranasally with a PRRSV-1 field strain, and one day later, the inoculated pigs were mingled by direct contact with the remaining 8 sentinel noninoculated pigs to evaluate PRRSV transmission. Thus, after the challenge, each group (V+ IM, V+ ID or V-) included 8 inoculated and 8 contact piglets. During the postvaccination and postchallenge phases, PRRSV replication (RT-PCR), PRRSV-specific antibodies (ELISA IgG and IgA, virus neutralization tests) and cell-mediated immunity (ELISPOT Interferon gamma) were monitored in blood and bronchoalveolar lavages (BALs). RESULTS: Postvaccination, vaccine viremia was lower in V+ ID pigs than in V+ IM pigs, whereas the cell-mediated immune response was detected earlier in the V+ ID group at 2 weeks postvaccination. In the BAL fluid, a very low mucosal immune response (humoral and cellular) was detected. Postchallenge, the vaccine efficacy was similar in inoculated animals with partial control of PRRSV viremia in V+ ID and V+ IM animals. In vaccinated sentinel pigs, vaccination drastically reduced PRRSV transmission with similar estimated transmission rates and latency durations for the V+ IM and V+ ID groups. CONCLUSIONS: Our results show that the tested MLV1 induced a faster cell-mediated immune response after ID immunization two weeks after vaccination but was equally efficacious after IM or ID immunization towards a challenge four weeks later. Considering the practical and welfare benefits of ID vaccination, these data further support the use of this route for PRRS MLVs.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Vacunas Virales , Porcinos , Animales , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Viremia/veterinaria , Inmunidad Mucosa , Anticuerpos Antivirales , Vacunación/veterinaria , Vacunación/métodos , Vacunas Atenuadas
2.
Vet Res ; 48(1): 31, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28545558

RESUMEN

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans, an emerging zoonosis mainly transmitted via food in developed countries and for which domestic pigs are recognised as the main reservoir. It therefore appears important to understand the features and drivers of HEV infection dynamics on pig farms in order to implement HEV surveillance programmes and to assess and manage public health risks. The authors have reviewed the international scientific literature on the epidemiological characteristics of HEV in swine populations. Although prevalence estimates differed greatly from one study to another, all consistently reported high variability between farms, suggesting the existence of multifactorial conditions related to infection and within-farm transmission of the virus. Longitudinal studies and experimental trials have provided estimates of epidemiological parameters governing the transmission process (e.g. age at infection, transmission parameters, shedding period duration or lag time before the onset of an immune response). Farming practices, passive immunity and co-infection with immunosuppressive agents were identified as the main factors influencing HEV infection dynamics, but further investigations are needed to clarify the different HEV infection patterns observed in pig herds as well as HEV transmission between farms. Relevant surveillance programmes and control measures from farm to fork also have to be fostered to reduce the prevalence of contaminated pork products entering the food chain.


Asunto(s)
Reservorios de Enfermedades/virología , Virus de la Hepatitis E , Hepatitis E/veterinaria , Enfermedades de los Porcinos/epidemiología , Animales , Hepatitis E/epidemiología , Hepatitis E/prevención & control , Humanos , Salud Pública , Porcinos/virología , Enfermedades de los Porcinos/prevención & control , Enfermedades de los Porcinos/virología
3.
Vet Res ; 48(1): 58, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974251

RESUMEN

Swine influenza viruses (swIAVs) are known to persist endemically in farrow-to-finish pig farms, leading to repeated swine flu outbreaks in successive batches of pigs at a similar age (mostly around 8 weeks of age). This persistence in European swine herds involves swIAVs from European lineages including H1avN1, H1huN2, H3N2, the 2009 H1N1 pandemic virus and their reassortants. The specific population dynamics of farrow-to-finish pig farms, the immune status of the animals at infection-time, the co-circulation of distinct subtypes leading to consecutive or concomitant infections have been evidenced as factors favouring swIAV persistence within herds. We developed a stochastic metapopulation model representing the co-circulation of two distinct swIAVs within a typical farrow-to-finish pig herd to evaluate the risk of reassortant viruses generation due to co-infection events. Control strategies related to herd management and/or vaccination schemes (batch-to-batch or mass vaccination of the sow herd and vaccination of growing pigs) were implemented to assess their relative efficacy regarding viral persistence. The overall probability of a co-infection event for France, possibly leading to reassortment, was evaluated to 16.8%. The export of consecutive piglets batches was identified as the most efficient measure facilitating swIAV infection fade-out. Although some vaccination schemes (batch-to-batch vaccination) had a beneficial effect in breeding sows by reducing the persistence of swIAVs within this subpopulation, none of vaccination strategies achieved swIAVs fade-out within the entire farrow-to-finish pig herd.


Asunto(s)
Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/prevención & control , Crianza de Animales Domésticos , Animales , Granjas , Subtipo H1N2 del Virus de la Influenza A , Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza/uso terapéutico , Modelos Estadísticos , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Dinámica Poblacional , Factores de Riesgo , Procesos Estocásticos , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología
4.
Virologie (Montrouge) ; 21(4): 173-187, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31967570

RESUMEN

Modelling in epidemiology can be used for parameter estimation, understanding infectious process or control strategies evaluation, and is based on a mathematical model representing the infectious process derived from the SIR model (susceptible-infectious-removed). This model is further adapted to the disease under study with additional health statuses to represent more precisely the characteristics of the infectious agent and to couple the infection dynamics with the population dynamics of the studied system. This adaptation is documented by descriptive and analytic epidemiological studies to obtain a model representing the infectious process in a realistic way. Risk assessment and/or evaluation of control strategies can be proposed by the model simulation. The use of a modelling approach to understand the determinisms of a viral infectious process within a structured animal population is further illustrated by the example of swine influenza A viruses persistence in pig farms. The model set up to this aim is used to better understand the mechanisms related to viruses persistence within the herd and identify potential control measures that could be applied in farm conditions.

5.
Vet Res ; 47(1): 86, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27530456

RESUMEN

A transmission experiment involving 5-week-old specific-pathogen-free (SPF) piglets, with (MDA(+)) or without maternally-derived antibodies (MDA(-)), was carried out to evaluate the impact of passive immunity on the transmission of a swine influenza A virus (swIAV). In each group (MDA(+)/MDA(-)), 2 seeders were placed with 4 piglets in direct contact and 5 in indirect contact (3 replicates per group). Serological kinetics (ELISA) and individual viral shedding (RT-PCR) were monitored for 28 days after infection. MDA waning was estimated using a nonlinear mixed-effects model and survival analysis. Differential transmission rates were estimated depending on the piglets' initial serological status and contact structure (direct contact with pen-mates or indirect airborne contact). The time to MDA waning was 71.3 [52.8-92.1] days on average. The airborne transmission rate was 1.41 [0.64-2.63] per day. The compared shedding pattern between groups showed that MDA(+) piglets had mainly a reduced susceptibility to infection compared to MDA(-) piglets. The resulting reproduction number estimated in MDA(+) piglets (5.8 [1.4-18.9]), although 3 times lower than in MDA(-) piglets (14.8 [6.4-27.1]), was significantly higher than 1. Such an efficient and extended spread of swIAV at the population scale in the presence of MDAs could contribute to swIAV persistence on farms, given the fact that the period when transmission is expected to be impacted by the presence of MDAs can last up to 10 weeks.


Asunto(s)
Inmunidad Materno-Adquirida/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Anticuerpos Antivirales/inmunología , Femenino , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Masculino , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Embarazo , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/transmisión
6.
Vet Res ; 46: 55, 2015 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-26048774

RESUMEN

In developed countries, most of hepatitis E human cases are of zoonotic origin. Swine is a major hepatitis E virus (HEV) reservoir and foodborne transmissions after pork product consumption have been described. The risk for HEV-containing pig livers at slaughter time is related to the age at infection and to the virus shedding duration. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is a virus that impairs the immune response; it is highly prevalent in pig production areas and suspected to influence HEV infection dynamics. The impact of PRRSV on the features of HEV infections was studied through an experimental HEV/PRRSV co-infection of specific-pathogen-free (SPF) pigs. The follow-up of the co-infected animals showed that HEV shedding was delayed by a factor of 1.9 in co-infected pigs compared to HEV-only infected pigs and specific immune response was delayed by a factor of 1.6. HEV shedding was significantly increased with co-infection and dramatically extended (48.6 versus 9.7 days for HEV only). The long-term HEV shedding was significantly correlated with the delayed humoral response in co-infected pigs. Direct transmission rate was estimated to be 4.7 times higher in case of co-infection than in HEV only infected pigs (0.70 and 0.15 per day respectively). HEV infection susceptibility was increased by a factor of 3.3, showing the major impact of PRRSV infection on HEV dynamics. Finally, HEV/PRRSV co-infection - frequently observed in pig herds - may lead to chronic HEV infection which may dramatically increase the risk of pig livers containing HEV at slaughter time.


Asunto(s)
Coinfección/veterinaria , Hepatitis E/veterinaria , Inmunidad Humoral , Síndrome Respiratorio y de la Reproducción Porcina/transmisión , Esparcimiento de Virus , Animales , Enfermedad Crónica , Coinfección/inmunología , Coinfección/transmisión , Coinfección/virología , Femenino , Hepatitis E/inmunología , Hepatitis E/transmisión , Hepatitis E/virología , Virus de la Hepatitis E/fisiología , Masculino , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Organismos Libres de Patógenos Específicos , Porcinos
7.
PLoS Comput Biol ; 8(3): e1002418, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22396639

RESUMEN

Understanding the mechanisms involved in long-term persistence of humoral immunity after natural infection or vaccination is challenging and crucial for further research in immunology, vaccine development as well as health policy. Long-lived plasma cells, which have recently been shown to reside in survival niches in the bone marrow, are instrumental in the process of immunity induction and persistence. We developed a mathematical model, assuming two antibody-secreting cell subpopulations (short- and long-lived plasma cells), to analyze the antibody kinetics after HAV-vaccination using data from two long-term follow-up studies. Model parameters were estimated through a hierarchical nonlinear mixed-effects model analysis. Long-term individual predictions were derived from the individual empirical parameters and were used to estimate the mean time to immunity waning. We show that three life spans are essential to explain the observed antibody kinetics: that of the antibodies (around one month), the short-lived plasma cells (several months) and the long-lived plasma cells (decades). Although our model is a simplified representation of the actual mechanisms that govern individual immune responses, the level of agreement between long-term individual predictions and observed kinetics is reassuringly close. The quantitative assessment of the time scales over which plasma cells and antibodies live and interact provides a basis for further quantitative research on immunology, with direct consequences for understanding the epidemiology of infectious diseases, and for timing serum sampling in clinical trials of vaccines.


Asunto(s)
Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Vacunas contra la Hepatitis A/administración & dosificación , Virus de la Hepatitis A/inmunología , Inmunidad Innata/inmunología , Modelos Inmunológicos , Células Plasmáticas/inmunología , Simulación por Computador , Humanos , Inmunidad Innata/efectos de los fármacos , Células Plasmáticas/efectos de los fármacos , Factores de Tiempo
8.
Vet Res ; 44: 102, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24165278

RESUMEN

Hepatitis E virus (HEV) can cause enterically-transmitted hepatitis in humans. The zoonotic nature of Hepatitis E infections has been established in industrialized areas and domestic pigs are considered as the main reservoir. The dynamics of transmission in pig herds therefore needs to be understood to reduce the prevalence of viremic pigs at slaughter and prevent contaminated pig products from entering the food chain. An experimental trial was carried out to study the main characteristics of HEV transmission between orally inoculated pigs and naïve animals. A mathematical model was used to investigate three transmission routes, namely direct contact between pigs and two environmental components to represent within-and between-group oro-fecal transmission. A large inter-individual variability was observed in response to infection with an average latent period lasting 6.9 days (5.8; 7.9) in inoculated animals and an average infectious period of 9.7 days (8.2; 11.2). Our results show that direct transmission alone, with a partial reproduction number of 1.41 (0.21; 3.02), can be considered as a factor of persistence of infection within a population. However, the quantity of virus present in the environment was found to play an essential role in the transmission process strongly influencing the probability of infection with a within pen transmission rate estimated to 2 · 10(-6)g ge(-1)d(-1)(1 · 10(-7); 7 · 10(-6)). Between-pen environmental transmission occurred to a lesser extent (transmission rate: 7 · 10(-8)g ge(-1) d(-1)(5 · 10(-9); 3 · 10(-7)) but could further generate a within-group process. The combination of these transmission routes could explain the persistence and high prevalence of HEV in pig populations.


Asunto(s)
Virus de la Hepatitis E/fisiología , Hepatitis E/veterinaria , Enfermedades de los Porcinos/transmisión , Animales , Heces/virología , Hepatitis E/transmisión , Hepatitis E/virología , Distribución Aleatoria , Porcinos , Enfermedades de los Porcinos/virología
9.
Vet Res ; 44: 72, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24007505

RESUMEN

Concomitant infections by different influenza A virus subtypes within pig farms increase the risk of new reassortant virus emergence. The aims of this study were to characterize the epidemiology of recurrent swine influenza virus infections and identify their main determinants. A follow-up study was carried out in 3 selected farms known to be affected by repeated influenza infections. Three batches of pigs were followed within each farm from birth to slaughter through a representative sample of 40 piglets per batch. Piglets were monitored individually on a monthly basis for serology and clinical parameters. When a flu outbreak occurred, daily virological and clinical investigations were carried out for two weeks. Influenza outbreaks, confirmed by influenza A virus detection, were reported at least once in each batch. These outbreaks occurred at a constant age within farms and were correlated with an increased frequency of sneezing and coughing fits. H1N1 and H1N2 viruses from European enzootic subtypes and reassortants between viruses from these lineages were consecutively and sometimes simultaneously identified depending on the batch, suggesting virus co-circulations at the farm, batch and sometimes individual levels. The estimated reproduction ratio R of influenza outbreaks ranged between 2.5 [1.9-2.9] and 6.9 [4.1-10.5] according to the age at infection-time and serological status of infected piglets. Duration of shedding was influenced by the age at infection time, the serological status of the dam and mingling practices. An impaired humoral response was identified in piglets infected at a time when they still presented maternally-derived antibodies.


Asunto(s)
Brotes de Enfermedades/veterinaria , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/aislamiento & purificación , Enfermedades de los Porcinos/epidemiología , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Estudios de Seguimiento , Francia/epidemiología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Porcinos , Enfermedades de los Porcinos/virología
10.
Front Vet Sci ; 10: 1225446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37745209

RESUMEN

Modeling of infectious diseases at the livestock-wildlife interface is a unique subset of mathematical modeling with many innate challenges. To ascertain the characteristics of the models used in these scenarios, a scoping review of the scientific literature was conducted. Fifty-six studies qualified for inclusion. Only 14 diseases at this interface have benefited from the utility of mathematical modeling, despite a far greater number of shared diseases. The most represented species combinations were cattle and badgers (for bovine tuberculosis, 14), and pigs and wild boar [for African (8) and classical (3) swine fever, and foot-and-mouth and disease (1)]. Assessing control strategies was the overwhelming primary research objective (27), with most studies examining control strategies applied to wildlife hosts and the effect on domestic hosts (10) or both wild and domestic hosts (5). In spatially-explicit models, while livestock species can often be represented through explicit and identifiable location data (such as farm, herd, or pasture locations), wildlife locations are often inferred using habitat suitability as a proxy. Though there are innate assumptions that may not be fully accurate when using habitat suitability to represent wildlife presence, especially for wildlife the parsimony principle plays a large role in modeling diseases at this interface, where parameters are difficult to document or require a high level of data for inference. Explaining observed transmission dynamics was another common model objective, though the relative contribution of involved species to epizootic propagation was only ascertained in a few models. More direct evidence of disease spill-over, as can be obtained through genomic approaches based on pathogen sequences, could be a useful complement to further inform such modeling. As computational and programmatic capabilities advance, the resolution of the models and data used in these models will likely be able to increase as well, with a potential goal being the linking of modern complex ecological models with the depth of dynamics responsible for pathogen transmission. Controlling diseases at this interface is a critical step toward improving both livestock and wildlife health, and mechanistic models are becoming increasingly used to explore the strategies needed to confront these diseases.

11.
Microbiol Spectr ; 11(4): e0184423, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37395665

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in infected patients mainly displays pulmonary and oronasal tropism; however, the presence of the virus has also been demonstrated in the stools of patients and consequently in wastewater treatment plant effluents, raising the question of the potential risk of environmental contamination (such as seawater contamination) through inadequately treated wastewater spillover into surface or coastal waters even if the environmental detection of viral RNA alone does not substantiate risk of infection. Therefore, here, we decided to experimentally evaluate the persistence of the porcine epidemic diarrhea virus (PEDv), considered as a coronavirus representative model, in the coastal environment of France. Coastal seawater was collected, sterile-filtered, and inoculated with PEDv before incubation for 0 to 4 weeks at four temperatures representative of those measured along the French coasts throughout the year (4, 8, 15, and 24°C). The decay rate of PEDv was determined using mathematical modeling and was used to determine the half-life of the virus along the French coast in accordance with temperatures from 2000 to 2021. We experimentally observed an inverse correlation between seawater temperature and the persistence of infectious viruses in seawater and confirm that the risk of transmission of infectious viruses from contaminated stool in wastewater to seawater during recreational practices is very limited. The present work represents a good model to assess the persistence of coronaviruses in coastal environments and contributes to risk evaluation, not only for SARS-CoV-2 persistence, but also for other coronaviruses, specifically enteric coronaviruses from livestock. IMPORTANCE The present work addresses the question of the persistence of coronavirus in marine environments because SARS-CoV-2 is regularly detected in wastewater treatment plants, and the coastal environment, subjected to increasing anthropogenic pressure and the final receiver of surface waters and sometimes insufficiently depurated wastewater, is particularly at risk. The problem also arises in the possibility of soil contamination by CoV from animals, especially livestock, during manure application, where, by soil impregnation and runoff, these viruses can end up in seawater. Our findings are of interest to researchers and authorities seeking to monitor coronaviruses in the environment, either in tourist areas or in regions of the world where centralized systems for wastewater treatment are not implemented, and more broadly, to the scientific community involved in "One Health" approaches.


Asunto(s)
COVID-19 , Virus de la Diarrea Epidémica Porcina , Animales , Porcinos , COVID-19/epidemiología , Aguas Residuales , SARS-CoV-2 , Suelo
12.
PLoS One ; 17(4): e0266457, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35390068

RESUMEN

The circulation of livestock pathogens in the pig industry is strongly related to animal movements. Epidemiological models developed to understand the circulation of pathogens within the industry should include the probability of transmission via between-farm contacts. The pig industry presents a structured network in time and space, whose composition changes over time. Therefore, to improve the predictive capabilities of epidemiological models, it is important to identify the drivers of farmers' choices in terms of trade partnerships. Combining complex network analysis approaches and exponential random graph models, this study aims to analyze patterns of the swine industry network and identify key factors responsible for between-farm contacts at the French scale. The analysis confirms the topological stability of the network over time while highlighting the important roles of companies, types of farm, farm sizes, outdoor housing systems and batch-rearing systems. Both approaches revealed to be complementary and very effective to understand the drivers of the network. Results of this study are promising for future developments of epidemiological models for livestock diseases. This study is part of the One Health European Joint Programme: BIOPIGEE.


Asunto(s)
Crianza de Animales Domésticos , Enfermedades de los Porcinos , Crianza de Animales Domésticos/métodos , Animales , Agricultores , Granjas , Humanos , Ganado , Porcinos
13.
Transbound Emerg Dis ; 69(5): e2132-e2144, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35390229

RESUMEN

African swine fever (ASF) represents the main threat to swine production, with heavy economic consequences for both farmers and the food industry. The spread of the virus that causes ASF through Europe raises the issues of identifying transmission routes and assessing their relative contributions in order to provide insights to stakeholders for adapted surveillance and control measures. A simulation model was developed to assess ASF spread over the commercial swine network in France. The model was designed from raw movement data and actual farm characteristics. A metapopulation approach was used, with transmission processes at the herd level potentially leading to external spread to epidemiologically connected herds. Three transmission routes were considered: local transmission (e.g. fomites, material exchange), movement of animals from infected to susceptible sites, and transit of trucks without physical animal exchange. Surveillance was represented by prevalence and mortality detection thresholds at herd level, which triggered control measures through movement ban for detected herds and epidemiologically related herds. The time from infection to detection varied between 8 and 21 days, depending on the detection criteria, but was also dependent on the types of herds in which the infection was introduced. Movement restrictions effectively reduced the transmission between herds, but local transmission was nevertheless observed in higher proportions highlighting the need of global awareness of all actors of the swine industry to mitigate the risk of local spread. Raw movement data were directly used to build a dynamic network on a realistic timescale. This approach allows for a rapid update of input data without any pre-treatment, which could be important in terms of responsiveness, should an introduction occur.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/prevención & control , Animales , Simulación por Computador , Toma de Decisiones , Brotes de Enfermedades/veterinaria , Europa (Continente)/epidemiología , Porcinos , Enfermedades de los Porcinos/epidemiología
14.
Transbound Emerg Dis ; 69(4): e532-e546, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34590433

RESUMEN

African swine fever (ASF) is considered the most impactful transboundary swine disease. In the absence of effective vaccines, control strategies are heavily dependent on mass depopulation and shipment restrictions. Here, we developed a nested multiscale model for the transmission of ASF, combining a spatially explicit network model of animal shipments with a deterministic compartmental model for the dynamics of two ASF strains within 3 km × 3 km pixels in one Brazilian state. The model outcomes are epidemic duration, number of secondary infected farms and pigs, and distance of ASF spread. The model also shows the spatial distribution of ASF epidemics. We analyzed quarantine-based control interventions in the context of mortality trigger thresholds for the deployment of control strategies. The mean epidemic duration of a moderately virulent strain was 11.2 days, assuming the first infection is detected (best-case scenario), and 15.9 days when detection is triggered at 10% mortality. For a highly virulent strain, the epidemic duration was 6.5 days and 13.1 days, respectively. The distance from the source to infected locations and the spatial distribution was not dependent on strain virulence. Under the best-case scenario, we projected an average number of infected farms of 23.77 farms and 18.8 farms for the moderate and highly virulent strains, respectively. At 10% mortality-trigger, the predicted number of infected farms was on average 46.27 farms and 42.96 farms, respectively. We also demonstrated that the establishment of ring quarantine zones regardless of size (i.e. 5 km, 15 km) was outperformed by backward animal movement tracking. The proposed modelling framework provides an evaluation of ASF epidemic potential, providing a ranking of quarantine-based control strategies that could assist animal health authorities in planning the national preparedness and response plan.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Epidemias , Enfermedades de los Porcinos , Fiebre Porcina Africana/epidemiología , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/fisiología , Animales , Brotes de Enfermedades/veterinaria , Epidemias/prevención & control , Epidemias/veterinaria , Granjas , Porcinos , Enfermedades de los Porcinos/epidemiología
15.
Prev Vet Med ; 208: 105750, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36054970

RESUMEN

African Swine Fever (ASF) has been slowly but steadily increasing its endemic range throughout Europe, posing an imminent risk to the pig industry. ASF transmission among wild boar occurs mainly through wild boar population movements, hence wild boar presence and density are important risk factors for introducing, maintaining, and spreading the disease. The understanding of wild boar population dynamics and their role in ASF transmission and persistence remains limited. It is crucial to gain knowledge in this area to improve wildlife management while minimizing the risks for ASF introduction and spread. We adapted an individual-based spatio-temporal stochastic model developed by Halasa et al. (2019) and tailored it to two regions in France. The model assessed yearly hunting activity, the carcass persistence seasonality, and the specific landscape characteristics of the Franco-Belgian border region and the Pyrénées-Atlantiques department. Following the establishment of local population dynamics through preliminary runs of the model, the model was run 100 iterations over 8 years in the two study areas where ASF was randomly seeded after the 2nd year of simulation. For each scenario, the model was initiated with 500 wild boar groups randomly spread across the study areas. Hunting activities were included and excluded to assess the impact on population growth and ASF spread. Results showed an ever-growing wild boar population for all scenarios, which was balanced when hunting activities were included. When introducing ASF, the wild boar populations were dramatically impacted in both areas with a decrease of 63 % of the population at the Franco-Belgian border and 86 % in the Pyrénées-Atlantiques department. Habitat fragmentation and landscape connectivity were highlighted as important factors shaping ASF propagation. The Franco-Belgian border, which had the most fragmented habitat with unsuitable areas for wild boars, was shown to limit wild boar movements, reducing the probability, and spread of ASF across the landscape. The lack of connectivity was reflected in a less effective transmission and lower number of infected groups (406 versus 467). In contrast, the epidemic duration was lengthened in the fragmented habitat compared to the homogenous area (2.6 years vs 1.6 years). This study provided information on defining and implementing control measures in case of an ASF incursion, since delimitation of the area via fences artificially induces landscape fragmentation, which is important for controlling ASF outbreaks.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Porcinos , Animales , Fiebre Porcina Africana/epidemiología , Caza , Sus scrofa , Ecosistema , Factores de Riesgo
16.
Transbound Emerg Dis ; 69(5): e1574-e1583, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35195353

RESUMEN

In 2016-2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured-coalescent-based phylodynamic approach that combined viral genomic data (n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between départements (French administrative regions) and the temporal dynamics of the effective viral population size (Ne) in each département. Viral migration rates quantify viral spread between départements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within-département transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors-including large-scale preventive culling and live-duck movement bans-on viral migration rates and Ne. We showed that the large-scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between départements. No relationship was found between the viral spread and duck movements between départements. The within-département transmission intensity was found to be weakly associated with the intensity of duck movements within départements. Together, these results indicated that the virus spread in short distances, either between adjacent départements or within départements. Results also suggested that the restrictions on duck transport within départements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast-evolving livestock pathogens.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Brotes de Enfermedades/veterinaria , Patos , Francia/epidemiología , Subtipo H5N8 del Virus de la Influenza A/genética , Aves de Corral
17.
One Health ; 15: 100433, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36277103

RESUMEN

While biosecurity, a central component of the One Health concept, is clearly defined, a harmonized definition of the term ´biosecurity measure´ (BSM) is missing. In turn, particularly at the farm and policy level, this leads to misunderstandings, low acceptance, poor implementation, and thus suboptimal biosecurity along the food animal production chain. Moreover, different views on BSMs affects making comparisons both at the policy level as well as in the scientific community. Therefore, as part of the One Health EJP BIOPIGEE project, a work group i) collected and discussed relevant inclusion and exclusion criteria for measures to be considered in the context of biosecurity and ii) conducted a systematic literature review for potentially existing definitions for the term BSM. This exercise confirmed the lack of a definition of BSM, underlining the importance of the topic. In the pool of articles considered relevant to defining the term BSM, specific research themes were identified. Based on these outcomes, we propose a definition of the term BSM: "A biosecurity measure (BSM) - is the implementation of a segregation, hygiene, or management procedure (excluding medically effective feed additives and preventive/curative treatment of animals) that specifically aims at reducing the probability of the introduction, establishment, survival, or spread of any potential pathogen to, within, or from a farm, operation or geographical area." The definition provides a basis for policymakers to identify factual BSMs, highlights the point of implementation and supports to achieve the necessary quality standards of biosecurity in food animal production. It also enables clear, harmonized, cross-sectoral communication of best biosecurity practices to and from relevant stakeholders and thus contribute to improving biosecurity and thereby strengthen the One Health approach.

18.
Transbound Emerg Dis ; 69(6): 3160-3166, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36197436

RESUMEN

The spread of highly pathogenic avian influenza (HPAI) viruses worldwide has serious consequences for animal health and a major economic impact on the poultry production sector. Since 2014, Europe has been severely hit by several HPAI epidemics, with France being the most affected country. Most recently, France was again affected by two devastating HPAI epidemics in 2020-21 and 2021-22. We conducted a descriptive analysis of the 2020-21 and 2021-22 epidemics, as a first step towards identifying the poultry sector's remaining vulnerabilities regarding HPAI viruses in France. We examined the spatio-temporal distribution of outbreaks that occurred in France in 2020-21 and 2021-22, and we assessed the outbreaks' spatial distribution in relation to the 2016-17 epidemic and to the two 'high-risk zones' recently incorporated into French legislation to strengthen HPAI prevention and control. There were 468 reported outbreaks during the 2020-21 epidemic and 1375 outbreaks during the 2021-22 epidemic. In both epidemics, the outbreaks' distribution matched extremely well that of 2016-17, and most outbreaks (80.6% and 68.4%) were located in the two high-risk zones. The southwestern high-risk zone was affected in both epidemics, while the western high-risk zone was affected for the first time in 2021-22, explaining the extremely high number of outbreaks reported. As soon as the virus reached the high-risk zones, it started to spread between farms at very high rates, with each infected farm infecting between two and three other farms at the peaks of transmission. We showed that the spatial distribution model used to create the two high-risk zones was able to predict the location of outbreaks for the 2020-21 and 2021-22 epidemics. These zones were characterized by high poultry farm densities; future efforts should, therefore, focus on reducing the density of susceptible poultry in highly dense areas.


Asunto(s)
Epidemias , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Brotes de Enfermedades/veterinaria , Epidemias/veterinaria , Francia/epidemiología , Enfermedades de las Aves de Corral/epidemiología
20.
Vet Res ; 42: 44, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21366902

RESUMEN

Antimicrobial resistance is of primary importance regarding public and animal health issues. Persistence and spread of resistant strains within a population contribute to the maintenance of a reservoir and lead to treatment failure. An experimental trial was carried out to study the horizontal transmission of a fluoroquinolone-resistant Escherichia coli strain from inoculated to naïve pigs. All naïve contact pigs had positive counts of fluoroquinolone-resistant E. coli after only two days of contact. Moreover, re-infections of inoculated pigs caused by newly contaminated animals were suspected. A maximum likelihood method, based on a susceptible-infectious-susceptible (SIS) model, was used to determine the transmission parameters. Two transmission levels were identified depending on the quantity of bacteria shed by infected individuals: (i) low-shedders with bacterial counts of resistant E. coli in the faeces between 5*10(3) and 10(6) CFU/g (ßL = 0.41 [0.27; 0.62]), (ii) high shedders with bacterial counts above 10(6) CFU/g (ßH = 0.98 [0.59; 1.62]). Hence, transmission between animals could be pivotal in explaining the persistence of resistant bacteria within pig herds.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Infecciones por Escherichia coli/veterinaria , Escherichia coli/efectos de los fármacos , Fluoroquinolonas/farmacología , Enfermedades de los Porcinos/transmisión , Animales , Escherichia coli/fisiología , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/transmisión , Funciones de Verosimilitud , Organismos Libres de Patógenos Específicos , Porcinos , Enfermedades de los Porcinos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA