Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Trends Genet ; 38(3): 218-221, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34702578

RESUMEN

Implementations and improvements of genome editing techniques used in plant science have increased exponentially. For some crops, such as potato, the use of transcription activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic repeats (CRISPR) has moved to the next step of trait development and field trials, and should soon be applied to commercial cultivation.


Asunto(s)
Edición Génica , Solanum tuberosum , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Productos Agrícolas/genética , Edición Génica/métodos , Genoma de Planta/genética , Solanum tuberosum/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética
2.
Phytopathology ; 113(8): 1428-1438, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36945727

RESUMEN

Biological control is a promising approach to reduce plant diseases caused by fungal pathogens and ensure high productivity in horticultural production. In the present study, we evaluated the biocontrol potential and underlying mechanisms of the beneficial fungus Aureobasidium pullulans against Botrytis cinerea and Colletotrichum acutatum, casual agents of gray mold and anthracnose diseases in strawberry. Notably, this is the first time that A. pullulans has been tested against C. acutatum in strawberry. A. pullulans strains (AP-30044, AP-30273, AP-53383, and AP-SLU6) showed significant variation in terms of growth and conidia production. An inverse relationship was found between the growth and conidiation rate, suggesting a trade-off between resource allocation for growth and conidial production. Dual plate co-culturing assays showed that mycelial growth of B. cinerea and C. acutatum was reduced by up to 35 and 18%, respectively, when challenged with A. pullulans compared with control treatments. Likewise, culture filtrates of A. pullulans showed varying levels of antifungal activity against B. cinerea and C. acutatum, reducing the mycelial biomass by up to 90 and 72%, respectively. Furthermore, milk powder plate assays showed that A. pullulans produced substantial amounts of extracellular proteases, which are known to degrade fungal cuticle. Ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) analyses revealed that A. pullulans produced exophilins, liamocins, and free fatty acids known to have antifungal properties. A. pullulans shows high potential for successful biological control of strawberry diseases and discuss opportunities for further optimization of this beneficial fungus.

3.
Plant J ; 108(3): 870-885, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34407245

RESUMEN

At the morphological and anatomical levels, the ionome, or the elemental composition of an organism, is an understudied area of plant biology. In particular, the ionomic responses of plant-pathogen interactions are scarcely described, and there are no studies on immune reactions. In this study we explored two X-ray fluorescence (XRF)-based ionome visualisation methods (benchtop- and synchrotron-based micro-XRF [µXRF]), as well as the quantitative inductively coupled plasma optical emission spectroscopy (ICP-OES) method, to investigate the changes that occur in the ionome of compatible and incompatible plant-pathogen interactions. We utilised the agronomically important and comprehensively studied interaction between potato (Solanum tuberosum) and the late blight oomycete pathogen Phytophthora infestans as an example. We used one late blight-susceptible potato cultivar and two resistant transgenic plant lines (only differing from the susceptible cultivar in one or three resistance genes) both in control and P. infestans-inoculated conditions. In the lesions from the compatible interaction, we observed rearrangements of several elements, including a decrease of the mobile macronutrient potassium (K) and an increase in iron (Fe) and manganese (Mn), compared with the tissue outside the lesion. Interestingly, we observed distinctly different distribution patterns of accumulation at the site of inoculation in the resistant lines for calcium (Ca), magnesium (Mg), Mn and silicon (Si) compared to the susceptible cultivar. The results reveal different ionomes in diseased plants compared to resistant plants. Our results demonstrate a technical advance and pave the way for deeper studies of the plant-pathogen ionome in the future.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Iones/análisis , Phytophthora infestans/patogenicidad , Solanum tuberosum/microbiología , Análisis Espectral/métodos , Susceptibilidad a Enfermedades , Iones/metabolismo , Metales/metabolismo , Fósforo/metabolismo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Espectrometría por Rayos X/instrumentación , Espectrometría por Rayos X/métodos , Análisis Espectral/instrumentación , Sincrotrones
4.
Phytopathology ; 112(2): 232-237, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34181440

RESUMEN

Gray mold caused by Botrytis cinerea is a common postharvest disease in strawberries, reducing shelf life considerably. We investigated the potential of the yeast-like biocontrol fungus Aureobasidium pullulans (AP-SLU6) vectored by bumblebees (Bombus terrestris) in the Flying Doctors® system to inhibit the pathogen and increase the shelf life of harvested strawberries (cultivar Sonata). Using bumblebees as vectors of various biocontrol agents is becoming increasingly popular, but any potentially negative effects on bee performance have been understudied. Our results show that, over the 4-week period of the trial, the performance and activity of the bees were not negatively affected by A. pullulans. The bees successfully picked up the powder formulation; then, they carried and deposited it on the flowers. The vectoring of the biocontrol agent significantly reduced gray mold development on the harvested fruits by 45% and increased shelf life by 100% in comparison with control treatments. This suggests that the biocontrol fungus applied during flowering successfully reduced Botrytis infection and thus, effectively protected the fruits from gray mold. In addition, the bee-vectored application of the biocontrol agent was found to be significantly more effective than spray application because the latter may temporarily increase humidity around the flower, thereby creating a suitable environment for the pathogen to thrive. In summary, our study demonstrates that A. pullulans vectored by bumblebees can decrease gray mold infection and improve the shelf life of strawberries without adversely affecting the bees, thus providing a basis for the sustainable and efficient control of gray mold on strawberry.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Fragaria , Animales , Aureobasidium , Abejas , Botrytis , Fragaria/microbiología , Frutas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
5.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34769464

RESUMEN

Multiple biotic and abiotic stresses challenge plants growing in agricultural fields. Most molecular studies have aimed to understand plant responses to challenges under controlled conditions. However, studies on field-grown plants are scarce, limiting application of the findings in agricultural conditions. In this study, we investigated the composition of apoplastic proteomes of potato cultivar Bintje grown under field conditions, i.e., two field sites in June-August across two years and fungicide treated and untreated, using quantitative proteomics, as well as its activity using activity-based protein profiling (ABPP). Samples were clustered and some proteins showed significant intensity and activity differences, based on their field site and sampling time (June-August), indicating differential regulation of certain proteins in response to environmental or developmental factors. Peroxidases, class II chitinases, pectinesterases, and osmotins were among the proteins more abundant later in the growing season (July-August) as compared to early in the season (June). We did not detect significant differences between fungicide Shirlan treated and untreated field samples in two growing seasons. Using ABPP, we showed differential activity of serine hydrolases and ß-glycosidases under greenhouse and field conditions and across a growing season. Furthermore, the activity of serine hydrolases and ß-glycosidases, including proteins related to biotic stress tolerance, decreased as the season progressed. The generated proteomics data would facilitate further studies aiming at understanding mechanisms of molecular plant physiology in agricultural fields and help applying effective strategies to mitigate biotic and abiotic stresses.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Solanum tuberosum/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Ecosistema , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Proteoma/análisis , Proteómica/métodos , Solanum tuberosum/crecimiento & desarrollo , Estrés Fisiológico/fisiología
6.
BMC Plant Biol ; 20(1): 120, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32183694

RESUMEN

BACKGROUND: Potato is the third most consumed crop in the world. Breeding for traits such as yield, product quality and pathogen resistance are main priorities. Identifying molecular signatures of these and other important traits is important in future breeding efforts. In this study, a progeny population from a cross between a breeding line, SW93-1015, and a cultivar, Désirée, was studied by trait analysis and RNA-seq in order to develop understanding of segregating traits at the molecular level and identify transcripts with expressional correlation to these traits. Transcript markers with predictive value for field performance applicable under controlled environments would be of great value for plant breeding. RESULTS: A total of 34 progeny lines from SW93-1015 and Désirée were phenotyped for 17 different traits in a field in Nordic climate conditions and controlled climate settings. A master transcriptome was constructed with all 34 progeny lines and the parents through a de novo assembly of RNA-seq reads. Gene expression data obtained in a controlled environment from the 34 lines was correlated to traits by different similarity indices, including Pearson and Spearman, as well as DUO, which calculates the co-occurrence between high and low values for gene expression and trait. Our study linked transcripts to traits such as yield, growth rate, high laying tubers, late and tuber blight, tuber greening and early flowering. We found several transcripts associated to late blight resistance and transcripts encoding receptors were associated to Dickeya solani susceptibility. Transcript levels of a UBX-domain protein was negatively associated to yield and a GLABRA2 expression modulator was negatively associated to growth rate. CONCLUSION: In our study, we identify 100's of transcripts, putatively linked based on expression with 17 traits of potato, representing both well-known and novel associations. This approach can be used to link the transcriptome to traits. We explore the possibility of associating the level of transcript expression from controlled, optimal environments to traits in a progeny population with different methods introducing the application of DUO for the first time on transcriptome data. We verify the expression pattern for five of the putative transcript markers in another progeny population.


Asunto(s)
Rasgos de la Historia de Vida , Fenotipo , Solanum tuberosum/genética , Transcriptoma , Tetraploidía
7.
Plant Dis ; 104(11): 3026-3032, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32830998

RESUMEN

Currently available fungicides against potato late blight are effective but there are concerns about the sustainability of frequent applications and the risks of fungicide resistance. Therefore, we investigated how potassium phosphite can be integrated into late blight control programs with reduced fungicides in field trials. Phosphite was somewhat less effective than the conventional fungicides at suppressing late blight in the foliage, and the tubers contained less starch. However, when we reduced the amount of phosphite and combined it with reduced amounts of conventional fungicides, we observed no differences in disease suppression, total yields, and tuber starch contents compared with the full treatments with conventional fungicides. The amount of phosphite detected in the harvested tubers was linearly associated with the amount of phosphite applied to the foliage. Our analyses indicate that phosphite could replace some fungicides without exceeding the current European Union standards for the maximum residue levels in potato tubers. No phosphite was detected in the starch from the tubers. In 1 of 2 years, early blight (caused by Alternaria solani) was less severe in the phosphite treatments than in the treatments without phosphite. The integration of phosphite into current treatment strategies would reduce the dependence on conventional fungicides.


Asunto(s)
Fosfitos , Phytophthora infestans , Solanum tuberosum , Fosfitos/farmacología , Enfermedades de las Plantas , Almidón
8.
Mol Cell Proteomics ; 16(11): 1958-1971, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28935716

RESUMEN

The oomycete Phytophthora infestans is the most harmful pathogen of potato. It causes the disease late blight, which generates increased yearly costs of up to one billion euro in the EU alone and is difficult to control. We have performed a large-scale quantitative proteomics study of six P. infestans life stages with the aim to identify proteins that change in abundance during development, with a focus on preinfectious life stages. Over 10 000 peptides from 2061 proteins were analyzed. We identified several abundance profiles of proteins that were up- or downregulated in different combinations of life stages. One of these profiles contained 59 proteins that were more abundant in germinated cysts and appressoria. A large majority of these proteins were not previously recognized as being appressorial proteins or involved in the infection process. Among those are proteins with putative roles in transport, amino acid metabolism, pathogenicity (including one RXLR effector) and cell wall structure modification. We analyzed the expression of the genes encoding nine of these proteins using RT-qPCR and found an increase in transcript levels during disease progression, in agreement with the hypothesis that these proteins are important in early infection. Among the nine proteins was a group involved in cell wall structure modification and adhesion, including three closely related, uncharacterized proteins encoded by PITG_01131, PITG_01132, and PITG_16135, here denoted Piacwp1-3 Transient silencing of these genes resulted in reduced severity of infection, indicating that these proteins are important for pathogenicity. Our results contribute to further insight into P. infestans biology, and indicate processes that might be relevant for the pathogen while preparing for host cell penetration and during infection. The mass spectrometry data have been deposited to ProteomeXchange via the PRIDE partner repository with the data set identifier PXD002446.


Asunto(s)
Phytophthora infestans/patogenicidad , Proteómica/métodos , Solanum tuberosum/parasitología , Factores de Virulencia/metabolismo , Pared Celular/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Espectrometría de Masas , Phytophthora infestans/crecimiento & desarrollo , Phytophthora infestans/metabolismo , Enfermedades de las Plantas/parasitología , Factores de Virulencia/genética
9.
Int J Mol Sci ; 20(19)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554174

RESUMEN

Plants have a variety of ways to defend themselves against pathogens. A commonly used model of the plant immune system is divided into a general response triggered by pathogen-associated molecular patterns (PAMPs), and a specific response triggered by effectors. The first type of response is known as PAMP triggered immunity (PTI), and the second is known as effector-triggered immunity (ETI). To obtain better insight into changes of protein abundance in immunity reactions, we performed a comparative proteomic analysis of a PTI and two different ETI models (relating to Phytophthora infestans) in potato. Several proteins showed higher abundance in all immune reactions, such as a protein annotated as sterol carrier protein 2 that could be interesting since Phytophthora species are sterol auxotrophs. RNA binding proteins also showed altered abundance in the different immune reactions. Furthermore, we identified some PTI-specific changes of protein abundance, such as for example, a glyoxysomal fatty acid beta-oxidation multifunctional protein and a MAR-binding protein. Interestingly, a lysine histone demethylase was decreased in PTI, and that prompted us to also analyze protein methylation in our datasets. The proteins upregulated explicitly in ETI included several catalases. Few proteins were regulated in only one of the ETI interactions. For example, histones were only downregulated in the ETI-Avr2 interaction, and a putative multiprotein bridging factor was only upregulated in the ETI-IpiO interaction. One example of a methylated protein that increased in the ETI interactions was a serine hydroxymethyltransferase.


Asunto(s)
Inmunidad de la Planta , Hojas de la Planta/inmunología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Proteómica , Solanum tuberosum/inmunología , Solanum tuberosum/metabolismo , Biología Computacional/métodos , Bases de Datos Genéticas , Espectrometría de Masas , Metilación , Mapeo de Interacción de Proteínas , Proteoma
10.
Phytopathology ; 108(7): 847-857, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29327646

RESUMEN

To understand the contribution of wild Solanum species to the epidemiology of potato late blight in Sweden, we characterized the resistance of the three putative alternative hosts: S. physalifolium, S. nigrum, and S. dulcamara to Phytophthora infestans, the causal agent of late blight. The pathogen sporulated in all 10 investigated S. physalifolium genotypes, suggesting susceptibility (S phenotype). Field-grown S. physalifolium was naturally infected but could regrow, though highly infected genotypes were smaller at the end of the season. In 75 S. nigrum genotypes, there were no symptoms (R phenotype) or a lesion restricted to the point of inoculation (RN phenotype), indicating resistance. In 164 S. dulcamara genotypes, most resistance variability was found within sibling groups. In addition to the three resistance phenotypes (R, RN, and S), in S. dulcamara a fourth new resistance phenotype (SL) was identified with lesions larger than the point of inoculation but without visible sporulation of the pathogen. Quantitative PCR confirmed P. infestans growth difference in RN, SL, and S phenotypes. Thus, in Sweden S. physalifolium is susceptible and could be a player in epidemiology. A limited role of S. dulcamara leaves in the epidemiology of late blight was suggested, since no major symptoms have been found in the field.


Asunto(s)
Phytophthora infestans , Enfermedades de las Plantas/genética , Solanum/genética , Solanum/microbiología , Genotipo , Hojas de la Planta , Suecia
11.
Int J Mol Sci ; 19(2)2018 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-29439444

RESUMEN

Plants have evolved different types of immune reactions but large-scale proteomics about these processes are lacking, especially in the case of agriculturally important crop pathosystems. We have established a system for investigating PAMP-triggered immunity (PTI) and two different effector-triggered immunity (ETI; triggered by Avr2 or IpiO) responses in potato. The ETI responses are triggered by molecules from the agriculturally important Phytophthora infestans interaction. To perform large-scale membrane protein-based comparison of these responses, we established a method to extract proteins from subcellular compartments in leaves. In the membrane fractions that were subjected to quantitative proteomics analysis, we found that most proteins regulated during PTI were also regulated in the same way in ETI. Proteins related to photosynthesis had lower abundance, while proteins related to oxidative and biotic stress, as well as those related to general antimicrobial defense and cell wall degradation, were found to be higher in abundance. On the other hand, we identified a few proteins-for instance, an ABC transporter-like protein-that were only found in the PTI reaction. Furthermore, we also identified proteins that were regulated only in ETI interactions. These included proteins related to GTP binding and heterotrimeric G-protein signaling, as well as those related to phospholipase signaling.


Asunto(s)
Resistencia a la Enfermedad , Proteínas de la Membrana/química , Proteínas de Plantas/química , Proteómica/métodos , Solanum tuberosum/inmunología , Membranas Intracelulares/química , Espectrometría de Masas/métodos , Proteínas de la Membrana/metabolismo , Phytophthora/patogenicidad , Hojas de la Planta/química , Proteínas de Plantas/metabolismo , Solanum tuberosum/química , Solanum tuberosum/microbiología
12.
J Proteome Res ; 15(2): 638-46, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26704985

RESUMEN

Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that enables precise quantitation of hundreds of peptides in a single run. This technique provides new opportunities for multiplexed protein biomarker measurements. For precision plant breeding, DNA-based markers have been used extensively, but the potential of protein biomarkers has not been exploited. In this work, we developed an SRM marker panel with assays for 104 potato (Solanum tuberosum) peptides selected using univariate and multivariate statistics. Thereafter, using random forest classification, the prediction markers were identified for Phytopthora infestans resistance in leaves, P. infestans resistance in tubers, and plant yield in potato leaf secretome samples. The results suggest that the marker panel has the predictive potential for three traits, two of which have no commercial DNA markers so far. Furthermore, the marker panel was also tested and found to be applicable to potato clones not used during the marker development. The proposed workflow is thus a proof-of-concept for targeted proteomics as an efficient readout in accelerated breeding for complex and agronomically important traits.


Asunto(s)
Fitomejoramiento/métodos , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Solanum tuberosum/metabolismo , Biomarcadores/metabolismo , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Espectrometría de Masas , Análisis Multivariante , Péptidos/metabolismo , Phytophthora infestans/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/microbiología , Solanum tuberosum/genética , Solanum tuberosum/microbiología
13.
Curr Issues Mol Biol ; 19: 73-88, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26364238

RESUMEN

The oomycetes include some of the most devastating plant pathogens. In this review we discuss the latest results from oomycete and plant studies with emphasis on interaction studies. We focus on the outcomes of RNAseq and proteomics studies and some pitfalls of these approaches. Both pathogenic interactions and biological control are discussed. We underline the usefulness of studies at several levels of complexity from studies of one organism, up to two or more and within agricultural fields (managed settings) up to wild ecosystems. Finally we identify areas of future interest such as detailed interactome studies, dual RNAseq studies, peptide modification studies and population/meta omics with or without biological control agents.


Asunto(s)
Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Oomicetos/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Plantas/genética , Plantas/metabolismo , Proteómica , Productos Agrícolas/genética , Productos Agrícolas/inmunología , Productos Agrícolas/metabolismo , Productos Agrícolas/microbiología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/inmunología , Enfermedades de las Plantas/inmunología , Plantas/inmunología , Plantas/microbiología , Proteómica/métodos , Transcriptoma
14.
Theor Appl Genet ; 129(1): 105-15, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26518573

RESUMEN

KEY MESSAGE: We show the usefulness of integrating effector screening in a breeding program and in resistance gene cloning, with Phytophthora resistance in the Swedish potato breeding clone SW93-1015 as an example. Phytophthora infestans is one of the most devastating plant pathogens worldwide. We have earlier found that the SW93-1015 potato breeding clone has an efficient resistance against P. infestans under field conditions in Sweden, which has an unusually high local diversity of the pathogen. This potato clone has characteristics that are different from classical R-gene-mediated resistance such as elevated levels of hydrogen peroxide (H2O2) under controlled conditions. Analysis of 76 F1 potato progenies from two individual crosses resulted in nearly 50% resistant clones, from both crosses. This result suggests that the SW93-1015 clone has a simplex genotype for this trait. Screening with over 50 different P. infestans effectors, containing the conserved motif RXLR (for Arg, any amino acid, Leu, Arg), revealed a specific response to Avr2, which suggests that SW93-1015 might contain a functional homolog of the R2 resistance gene. We cloned eight R2 gene homologs from SW93-1015, whereof seven have not been described before and one gene encoded a protein identical to Rpi-ABPT. Expression of this gene in potato cultivar Désirée provided R2-specific resistance, whereas other homologues did not. Using RNAseq analyses we designed a new DNA marker for the R2 resistance in SW93-1015. In summary, we have demonstrated the use of effector screening in practical breeding material and revealed the key resistance mechanism for SW93-1015.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Phytophthora infestans , Enfermedades de las Plantas/genética , Solanum tuberosum/genética , Secuencia de Aminoácidos , Cruzamiento , Clonación Molecular , Marcadores Genéticos , Genotipo , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Solanum tuberosum/microbiología
15.
Phytopathology ; 106(8): 877-83, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27070426

RESUMEN

Nongenetic inheritance (e.g., transgenerational epigenetic effects) has received increasing interest in recent years, particularly in plants. However, most studies have involved a few model species and relatively little is known about wild species in these respects. We investigated transgenerational induced resistance to infection by the devastating oomycete Phytophthora infestans in Solanum physalifolium, a wild relative of cultivated potato. We treated plants with ß-aminobutyric acid (BABA), a nontoxic compound acting as an inducing agent, or infected plants with P. infestans. BABA treatment reduced lesion size in detached-leaf assays inoculated by P. infestans in two of three tested genotypes, suggesting that resistance to oomycetes can be induced by BABA within a generation not only in crops or model species but also in wild species directly collected from nature. Both BABA treatment and infection in the parental generation reduced lesions in the subsequent generation in one of two genotypes, indicating a transgenerational influence on resistance that varies among genotypes. We did not detect treatment effects on seed traits, indicating the involvement of a mechanism unrelated to maternal effects. In conclusion, our study provides data on BABA induction and nongenetic inheritance of induced resistance in a wild relative of cultivated potato, implying that this factor might be important in the ecological and agricultural landscape.


Asunto(s)
Phytophthora , Enfermedades de las Plantas/microbiología , Solanum/microbiología , Aminobutiratos , Epigénesis Genética , Predisposición Genética a la Enfermedad , Semillas
16.
Int J Mol Sci ; 17(10)2016 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-27706100

RESUMEN

This review provides a current summary of plant resistance inducers (PRIs) that have been successfully used in the Solanaceae plant family to protect against pathogens by activating the plant's own defence. Solanaceous species include many important crops such as potato and tomato. We also present findings regarding the molecular processes after application of PRIs, even if the number of such studies still remains limited in this plant family. In general, there is a lack of patterns regarding the efficiency of induced resistance (IR) both between and within solanaceous species. In many cases, a hypersensitivity-like reaction needs to form in order for the PRI to be efficient. "-Omics" studies have already given insight in the complexity of responses, and can explain some of the differences seen in efficacy of PRIs between and within species as well as towards different pathogens. Finally, examples of field applications of PRIs for solanaceous crops are presented and discussed. We predict that PRIs will play a role in future plant protection strategies in Solanaceae crops if they are combined with other means of disease control in different spatial and temporal combinations.


Asunto(s)
Solanaceae/metabolismo , Aminobutiratos/metabolismo , Aminobutiratos/farmacología , Bacterias/efectos de los fármacos , Productos Agrícolas , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Etilenos/metabolismo , Etilenos/farmacología , Hongos/efectos de los fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Solanaceae/genética , Solanaceae/microbiología
17.
BMC Bioinformatics ; 16: 239, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26224486

RESUMEN

BACKGROUND: How protein phosphorylation relates to kingdom/phylum divergence is largely unknown and the amino acid residues surrounding the phosphorylation site have profound importance on protein kinase-substrate interactions. Standard motif analysis is not adequate for large scale comparative analysis because each phophopeptide is assigned to a unique motif and perform poorly with the unbalanced nature of the input datasets. RESULTS: First the discriminative n-grams of five species from five different kingdom/phyla were identified. A signature with 5540 discriminative n-grams that could be found in other species from the same kingdoms/phyla was created. Using a test data set, the ability of the signature to classify species in their corresponding kingdom/phylum was confirmed using classification methods. Lastly, ortholog proteins among proteins with n-grams were identified in order to determine to what degree was the identity of the detected n-grams a property of phosphosites rather than a consequence of species-specific or kingdom/phylum-specific protein inventory. The motifs were grouped in clusters of equal physico-chemical nature and their distribution was similar between species in the same kingdom/phylum while clear differences were found among species of different kingdom/phylum. For example, the animal-specific top discriminative n-grams contained many basic amino acids and the plant-specific motifs were mainly acidic. Secondary structure prediction methods show that the discriminative n-grams in the majority of the cases lack from a regular secondary structure as on average they had 88% of random coil compared to 66% found in the phosphoproteins they were derived from. CONCLUSIONS: The discriminative n-grams were able to classify organisms in their corresponding kingdom/phylum, they show different patterns among species of different kingdom/phylum and these regions can contribute to evolutionary divergence as they are in disordered regions that can evolve rapidly. The differences found possibly reflect group-specific differences in the kinomes of the different groups of species.


Asunto(s)
Algoritmos , Eucariontes/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Secuencias de Aminoácidos , Animales , Arabidopsis/metabolismo , Análisis por Conglomerados , Análisis Discriminante , Evolución Molecular , Humanos , Fosfopéptidos/análisis , Fosfopéptidos/química , Fosforilación , Phytophthora/metabolismo , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo
19.
Mol Cell Proteomics ; 12(5): 1407-20, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23306530

RESUMEN

Label-free quantification using precursor-based intensities is a versatile workflow for large-scale proteomics studies. The method however requires extensive computational analysis and is therefore in need of robust quality control during the data mining stage. We present a new label-free data analysis workflow integrated into a multiuser software platform. A novel adaptive alignment algorithm has been developed to minimize the possible systematic bias introduced into the analysis. Parameters are estimated on the fly from the data at hand, producing a user-friendly analysis suite. Quality metrics are output in every step of the analysis as well as actively incorporated into the parameter estimation. We furthermore show the improvement of this system by comprehensive comparison to classical label-free analysis methodology as well as current state-of-the-art software.


Asunto(s)
Programas Informáticos , Espectrometría de Masas en Tándem/normas , Algoritmos , Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Phytophthora infestans/fisiología , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Proteoma/química , Proteoma/aislamiento & purificación , Proteoma/metabolismo , Proteómica , Control de Calidad , Solanum tuberosum/metabolismo , Solanum tuberosum/parasitología , Espectrometría de Masas en Tándem/métodos
20.
J Proteome Res ; 13(4): 1848-59, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24588563

RESUMEN

The oomycete Phytophthora infestans is the causal agent of late blight in potato and tomato. Since the underlying processes that govern pathogenicity and development in P. infestans are largely unknown, we have performed a large-scale phosphoproteomics study of six different P. infestans life stages. We have obtained quantitative data for 2922 phosphopeptides and compared their abundance. Life-stage-specific phosphopeptides include ATP-binding cassette transporters and a kinase that only occurs in appressoria. In an extended data set, we identified 2179 phosphorylation sites and deduced 22 phosphomotifs. Several of the phosphomotifs matched consensus sequences of kinases that occur in P. infestans but not Arabidopsis. In addition, we detected tyrosine phosphopeptides that are potential targets of kinases resembling mammalian tyrosine kinases. Among the phosphorylated proteins are members of the RXLR and Crinkler effector families. The latter are phosphorylated in several life stages and at multiple positions, in sites that are conserved between different members of the Crinkler family. This indicates that proteins in the Crinkler family have functions beyond their putative role as (necrosis-inducing) effectors. This phosphoproteomics data will be instrumental for studies on oomycetes and host-oomycete interactions. The data sets have been deposited to ProteomeXchange (identifier PXD000433).


Asunto(s)
Estadios del Ciclo de Vida/fisiología , Fosfopéptidos/metabolismo , Fosfoproteínas/metabolismo , Phytophthora infestans/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Fosfopéptidos/análisis , Fosfopéptidos/química , Fosfoproteínas/análisis , Fosfoproteínas/química , Fosforilación , Phytophthora infestans/química , Phytophthora infestans/fisiología , Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/química , Proteómica , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA