RESUMEN
OBJECTIVES: Metabolic changes are crucially involved in osteoclast development and may contribute to bone degradation in rheumatoid arthritis (RA). The enzyme aconitate decarboxylase 1 (Acod1) is known to link the cellular function of monocyte-derived macrophages to their metabolic status. As osteoclasts derive from the monocyte lineage, we hypothesised a role for Acod1 and its metabolite itaconate in osteoclast differentiation and arthritis-associated bone loss. METHODS: Itaconate levels were measured in human peripheral blood mononuclear cells (PBMCs) of patients with RA and healthy controls by mass spectrometry. Human and murine osteoclasts were treated with the itaconate derivative 4-octyl-itaconate (4-OI) in vitro. We examined the impact of Acod1-deficiency and 4-OI treatment on bone erosion in mice using K/BxN serum-induced arthritis and human TNF transgenic (hTNFtg) mice. SCENITH and extracellular flux analyses were used to evaluate the metabolic activity of osteoclasts and osteoclast progenitors. Acod1-dependent and itaconate-dependent changes in the osteoclast transcriptome were identified by RNA sequencing. CRISPR/Cas9 gene editing was used to investigate the role of hypoxia-inducible factor (Hif)-1α in Acod1-mediated regulation of osteoclast development. RESULTS: Itaconate levels in PBMCs from patients with RA were inversely correlated with disease activity. Acod1-deficient mice exhibited increased osteoclast numbers and bone erosion in experimental arthritis while 4-OI treatment alleviated inflammatory bone loss in vivo and inhibited human and murine osteoclast differentiation in vitro. Mechanistically, Acod1 suppressed osteoclast differentiation by inhibiting succinate dehydrogenase-dependent production of reactive oxygen species and Hif1α-mediated induction of aerobic glycolysis. CONCLUSION: Acod1 and itaconate are crucial regulators of osteoclast differentiation and bone loss in inflammatory arthritis.
RESUMEN
Autoimmune diseases (AIDs) are caused by the loss of self-tolerance and destruction of tissues by the host's immune system. Several antigen-specific immunotherapies, focused on arresting the autoimmune attack, have been tested in clinical trials with discouraging results. Therefore, there is a need for innovative strategies to restore self-tolerance safely and definitively in AIDs. We previously demonstrated the therapeutic efficacy of phosphatidylserine (PS)-liposomes encapsulating autoantigens in experimental type 1 diabetes and multiple sclerosis. Here, we show that PS-liposomes can be adapted to other autoimmune diseases by simply replacing the encapsulated autoantigen. After administration, they are distributed to target organs, captured by phagocytes and interact with several immune cells, thus exerting a tolerogenic and immunoregulatory effect. Specific PS-liposomes demonstrate great preventive and therapeutic efficacy in rheumatoid arthritis and myasthenia gravis. Thus, this work highlights the therapeutic potential of a platform for several autoimmunity settings, which is specific, safe, and with long-term effects.
Asunto(s)
Enfermedades Autoinmunes , Diabetes Mellitus Tipo 1 , Humanos , Autoantígenos , Liposomas , Enfermedades Autoinmunes/tratamiento farmacológico , Tolerancia InmunológicaRESUMEN
OBJECTIVE: To investigate how the mucosal barrier in the intestine influences the development of arthritis, considering that metabolic changes in the intestinal epithelium influence its barrier function. METHODS: Intestinal hypoxia inducible factor (HIF)-2α expression was assessed before, at onset and during experimental arthritis and human rheumatoid arthritis (RA). Intestinal epithelial cell-specific HIF2α conditional knock-out mice were generated (HIF2α∆IEC) and subjected to collagen-induced arthritis. Clinical and histological courses of arthritis were recorded; T-cell and B-cell subsets were analysed in the gut and secondary lymphatic organs; and intestinal epithelial cells were subjected to molecular mRNA sequencing in HIF2α∆IEC and littermate control mice. The gut intestinal HIF2α target genes were delineated by chromatin immunoprecipitation and luciferase experiments. Furthermore, pharmacological HIF2α inhibitor PT2977 was used for inhibition of arthritis. RESULTS: Intestinal HIF2α expression peaked at onset of experimental arthritis and RA. Conditionally, deletion of HIF2α in gut epithelial cells inhibited arthritis and was associated with improved intestinal barrier function and less intestinal and lymphatic Th1 and Th17 activation. Mechanistically, HIF2α induced the transcription of the pore-forming claudin (CLDN)-15, which inhibits intestinal barrier integrity. Furthermore, treatment with HIF2α inhibitor decreased claudin-15 expression in epithelial cells and inhibited arthritis. CONCLUSION: These findings show that the HIF2α-CLDN15 axis is critical for the breakdown of intestinal barrier function at onset of arthritis, highlighting the functional link between intestinal homeostasis and arthritis.
RESUMEN
OBJECTIVES: Eosinophils possess pro-inflammatory functions in asthma. However, our recent studies have suggested that innate lymphoid cells type 2 (ILC2s) and eosinophils have proresolving properties in rheumatoid arthritis (RA). Nothing is known yet about the mechanisms determining the double-edged role of eosinophils. Therefore, we investigated whether asthma, a paradigm eosinophilic disease, can elicit resolution of chronic arthritis. METHODS: Ovalbumin-triggered eosinophilic asthma was combined with K/BxN serum-induced arthritis, where lung and synovial eosinophil subsets were compared by single-cell RNA sequencing (scRNA-seq). To investigate the involvement of the ILC2-interleukin-5 (IL-5) axis, hydrodynamic injection (HDI) of IL-25 and IL-33 plasmids, IL-5 reporter mice and anti-IL-5 antibody treatment were used. In patients with RA, the presence of distinct eosinophil subsets was examined in peripheral blood and synovial tissue. Disease activity of patients with RA with concomitant asthma was monitored before and after mepolizumab (anti-IL-5 antibody) therapy. RESULTS: The induction of eosinophilic asthma caused resolution of murine arthritis and joint tissue protection. ScRNA-seq revealed a specific subset of regulatory eosinophils (rEos) in the joints, distinct from inflammatory eosinophils in the lungs. Mechanistically, synovial rEos expanded on systemic upregulation of IL-5 released by lung ILC2s. Eosinophil depletion abolished the beneficial effect of asthma on arthritis. rEos were consistently present in the synovium of patients with RA in remission, but not in active stage. Remarkably, in patients with RA with concomitant asthma, mepolizumab treatment induced relapse of arthritis. CONCLUSION: These findings point to a hitherto undiscovered proresolving signature in an eosinophil subset that stimulates arthritis resolution.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Asma , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Asma/tratamiento farmacológico , Eosinófilos , Humanos , Inmunidad Innata , Interleucina-5/farmacología , Linfocitos , RatonesRESUMEN
The periodontal ligament (PDL) is exposed to different kinds of mechanical stresses such as bite force or orthodontic tooth movement. A simple and efficient model to study molecular responses to mechanical stress is the application of compressive force onto primary human periodontal ligament fibroblasts via glass disks. Yet, this model suffers from the need for primary cells from human donors which have a limited proliferative capacity. Here we show that an immortalized cell line, PDL-hTERT, derived from primary human periodontal ligament fibroblasts exhibits characteristic responses to glass disk-mediated compressive force resembling those of primary cells. These responses include induction and secretion of pro-inflammatory markers, changes in expression of extracellular matrix-reorganizing genes and induction of genes related to angiogenesis, osteoblastogenesis and osteoclastogenesis. The fact that PDL-hTERT cells can easily be transfected broadens their usefulness, as molecular gain- and loss-of-function studies become feasible.
Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Ligamento Periodontal/citología , Telomerasa/metabolismo , Línea Celular , Proliferación Celular , Fibroblastos/citología , Fibroblastos/metabolismo , Vidrio , Humanos , Modelos Biológicos , Ligamento Periodontal/metabolismo , Estrés Mecánico , Técnicas de Movimiento DentalRESUMEN
Bone metastasis is a common complication of certain cancers such as melanoma. The spreading of cancer cells into the bone is supported by changes in the bone marrow environment. The specific role of osteocytes in this process is yet to be defined. By RNA-seq and chemokines screening we show that osteocytes release the chemokine CXCL5 when they are exposed to melanoma cells. Osteocytes-mediated CXCL5 secretion enhanced the migratory and invasive behaviour of melanoma cells. When the expression of the CXCL5 receptor, CXCR2, was down-regulated in melanoma cells in vitro, we observed a significant decrease in melanoma cell migration in response to osteocytes. Furthermore, melanoma cells with down-regulated CXCR2 expression showed less bone metastasis and less bone loss in the bone metastasis model in vivo. Furthermore, when simultaneously down-regulating CXCL5 in osteocytes and CXCR2 in melanoma cells, melanoma progression was abrogated in vivo. In summary, these data suggest a significant role of osteocytes in bone metastasis of melanoma, which is mediated through the CXCL5-CXCR2 pathway.
Asunto(s)
Neoplasias Óseas , Movimiento Celular , Quimiocina CXCL5 , Melanoma , Osteocitos , Receptores de Interleucina-8B , Osteocitos/metabolismo , Osteocitos/patología , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Quimiocina CXCL5/metabolismo , Quimiocina CXCL5/genética , Animales , Melanoma/metabolismo , Melanoma/patología , Melanoma/secundario , Melanoma/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Ratones , Línea Celular Tumoral , Humanos , Transducción de Señal , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BLRESUMEN
Eosinophils are involved in tissue homeostasis. Herein, we unveiled eosinophils as important regulators of bone homeostasis. Eosinophils are localized in proximity to bone-resorbing osteoclasts in the bone marrow. The absence of eosinophils in ΔdblGATA mice results in lower bone mass under steady-state conditions and amplified bone loss upon sex hormone deprivation and inflammatory arthritis. Conversely, increased numbers of eosinophils in IL-5 transgenic mice enhance bone mass under steady-state conditions and protect from hormone- and inflammation- mediated bone loss. Eosinophils strongly inhibit the differentiation and demineralization activity of osteoclasts and lead to profound changes in the transcriptional profile of osteoclasts. This osteoclast-suppressive effect of eosinophils is based on the release of eosinophil peroxidase causing impaired reactive oxygen species and mitogen-activated protein kinase induction in osteoclast precursors. In humans, the number and the activity of eosinophils correlates with bone mass in healthy participants and rheumatoid arthritis patients. Taken together, experimental and human data indicate a regulatory function of eosinophils on bone.
Asunto(s)
Resorción Ósea , Peroxidasa del Eosinófilo , Osteoclastos , Animales , Humanos , Ratones , Resorción Ósea/metabolismo , Diferenciación Celular , Peroxidasa del Eosinófilo/metabolismo , Eosinófilos , Homeostasis , Ratones Transgénicos , Osteoclastos/metabolismoRESUMEN
The term osteoimmunology describes an interdisciplinary research field that links the investigation of osteology (bone cells) with immunology. The crosstalk between innate and adaptive immune cells and cells involved in bone remodeling, mainly bone-resorbing osteoclasts and bone-forming osteoblasts, becomes particularly obvious in the inflammatory autoimmune disease rheumatoid arthritis (RA). Besides striking inflammation of the joints, RA causes bone loss, leading to joint damage and disabilities as well as generalized osteoporosis. Mechanistically, RA-associated immune cells (macrophages, T cells, B cells etc.) produce high levels of pro-inflammatory cytokines, receptor activator of nuclear factor κB ligand (RANKL) and autoantibodies that promote bone degradation and at the same time counteract new bone formation. Today, antirheumatic therapy effectively ceases joint inflammation and arrests bone erosion. However, the repair of established bone lesions still presents a challenging task and requires improved treatment options. In this review, we outline the knowledge gained over the past years about the immunopathogenesis of RA and the impact of a dysregulated immune system on bone metabolism.
Asunto(s)
Artritis Reumatoide , Ligando RANK , Artritis Reumatoide/patología , Remodelación Ósea , Humanos , Sistema Inmunológico/metabolismo , Sistema Inmunológico/patología , Inflamación/patología , Osteoclastos/metabolismo , Ligando RANK/metabolismoRESUMEN
Introduction: Increasing evidences have shown that hypoxia and the immune microenvironment play vital roles in the development of osteosarcoma. However, reliable gene signatures based on the combination of hypoxia and the immune status for prognostic prediction of osteosarcoma have so far not been identified. Methods: The individual hypoxia and immune status of osteosarcoma patients were identified with transcriptomic profiles of a training cohort from the TARGET database using ssGSEA and ESTIMATE algorithms, respectively. Lasso regression and stepwise Cox regression were performed to develop a hypoxia-immune-based gene signature. An independent cohort from the GEO database was used for external validation. Finally, a nomogram was constructed based on the gene signature and clinical features to improve the risk stratification and to quantify the risk assessment for individual patients. Results: Hypoxia and the immune status were significantly associated with the prognosis of osteosarcoma patients. Seven hypoxia- and immune-related genes (BNIP3, SLC38A5, SLC5A3, CKMT2, S100A3, CXCL11 and PGM1) were identified to be involved in our prognostic signature. In the training cohort, the prognostic signature discriminated high-risk patients with osteosarcoma. The hypoxia-immune-based gene signature proved to be a stable and predictive method as determined in different datasets and subgroups of patients. Furthermore, a nomogram based on the prognostic signature was generated to optimize the risk stratification and to quantify the risk assessment. Similar results were validated in an independent GEO cohort, confirming the stability and reliability of the prognostic signature. Conclusion: The hypoxia-immune-based prognostic signature might contribute to the optimization of risk stratification for survival and personalized management of osteosarcoma patients.
RESUMEN
In the bone marrow, B cells and bone-resorbing osteoclasts colocalize and form a specific microenvironment. How B cells functionally influence osteoclasts and bone architecture is poorly understood. Using genetically modified mice and high-throughput analyses, we demonstrate that prolonged HIF-1α signaling in B cells leads to enhanced RANKL production and osteoclast formation. In addition, deletion of HIF-1α in B cells prevents estrogen deficiency-induced bone loss in mice. Mechanistically, estrogen controls HIF-1α protein stabilization through HSP70-mediated degradation in bone marrow B cells. The stabilization of HIF-1α protein in HSP70-deficient bone marrow B cells promotes RANKL production and osteoclastogenesis. Induction of HSP70 expression by geranylgeranylacetone (GGA) administration alleviates ovariectomy-induced osteoporosis. Moreover, RANKL gene expression has a positive correlation with HIF1A expression in human B cells. In conclusion, HIF-1α signaling in B cells is crucial for the control of osteoclastogenesis, and the HSP70/HIF-1α axis may serve as a new therapeutic target for osteoporosis.
RESUMEN
Here we show that soluble CD83 induces the resolution of inflammation in an antigen-induced arthritis (AIA) model. Joint swelling and the arthritis-related expression levels of IL-1ß, IL-6, RANKL, MMP9, and OC-Stamp were strongly reduced, while Foxp3 was induced. In addition, we observed a significant inhibition of TRAP+ osteoclast formation, correlating with the reduced arthritic disease score. In contrast, cell-specific deletion of CD83 in human and murine precursor cells resulted in an enhanced formation of mature osteoclasts. RNA sequencing analyses, comparing sCD83- with mock treated cells, revealed a strong downregulation of osteoclastogenic factors, such as Oc-Stamp, Mmp9 and Nfatc1, Ctsk, and Trap. Concomitantly, transcripts typical for pro-resolving macrophages, e.g., Mrc1/2, Marco, Klf4, and Mertk, were upregulated. Interestingly, members of the metallothionein (MT) family, which have been associated with a reduced arthritic disease severity, were also highly induced by sCD83 in samples derived from RA patients. Finally, we elucidated the sCD83-induced signaling cascade downstream to its binding to the Toll-like receptor 4/(TLR4/MD2) receptor complex using CRISPR/Cas9-induced knockdowns of TLR4/MyD88/TRIF and MTs, revealing that sCD83 acts via the TRIF-signaling cascade. In conclusion, sCD83 represents a promising therapeutic approach to induce the resolution of inflammation and to prevent bone erosion in autoimmune arthritis.
Asunto(s)
Antígenos CD , Artritis , Inmunoglobulinas , Glicoproteínas de Membrana , Osteólisis , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Antígenos CD/metabolismo , Artritis/metabolismo , Humanos , Inmunoglobulinas/metabolismo , Inflamación/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Glicoproteínas de Membrana/metabolismo , Ratones , Osteoclastos/metabolismo , Osteólisis/metabolismo , Receptor Toll-Like 4/metabolismo , Antígeno CD83RESUMEN
BACKGROUND: Human malignant melanoma is a highly aggressive, heterogeneous and drug-resistant cancer. Due to a high number of clones, harboring various mutations that affect key pathways, there is an exceptional level of phenotypic variation and intratumor heterogeneity (ITH) in melanoma. This poses a significant challenge to personalized cancer medicine. Hitherto, it remains unclear to what extent the heterogeneity of melanoma affects the immune microenvironment. Herein, we explore the interaction between the tumor heterogeneity and the host immune response in a melanoma cohort utilizing The Cancer Genome Atlas (TCGA). METHODS: Clonal Heterogeneity Analysis Tool (CHAT) was used to estimate intratumor heterogeneity, and immune cell composition was estimated using CIBERSORT. The Overall Survival (OS) among groups was analyzed using Kaplan-Meier curves with the log-rank test and multivariate cox regression. RNA-seq data were evaluated to identify differentially expressed immunomodulatory genes. The reverse phase protein array (RPPA) data platform was used to validate immune responses at protein level. RESULTS: Tumors with high heterogeneity were associated with decreased overall survival (p = 0.027). High CHAT tumors were correlated with less infiltration by anti-tumor CD8 T cells (p = 0.0049), T follicular cells (p = 0.00091), and M1 macrophages (p = 0.0028), whereas tumor-promoting M2 macrophages were increased (p = 0.02). High CHAT tumors correlated with a reduced expression of immunomodulatory genes, particularly Programmed Cell Death 1 (PD1) and its ligand PD-L1. In addition, high CHAT tumors exhibited lower immune Cytotoxic T lymphocytes (CTLs)-mediated toxicity pathway score (p = 2.9E-07) and cytotoxic pathway score (p = 2.9E-08). High CHAT tumors were also associated with a lower protein level of immune-regulatory kinases, such as lymphocyte-specific protein tyrosine kinase (LCK) (p = 3.4e-5) and spleen tyrosine kinase (SYK) (p = 0.0011). CONCLUSIONS: Highly heterogeneous melanoma tumors are associated with reduced immune cell infiltration and immune response activation as well as decreased survival. Our results reveal that intratumor heterogeneity is an indicative factor for patient survival due to its impact on anti-tumor immune response.
RESUMEN
Although the control of bone-resorbing osteoclasts through osteocyte-derived RANKL is well defined, little is known about the regulation of osteoclasts by osteocyte death. Indeed, several skeletal diseases, such as bone fracture, osteonecrosis, and inflammation are characterized by excessive osteocyte death. Herein we show that osteoclasts sense damage-associated molecular patterns (DAMPs) released by necrotic osteocytes via macrophage-inducible C-type lectin (Mincle), which induced their differentiation and triggered bone loss. Osteoclasts showed robust Mincle expression upon exposure to necrotic osteocytes in vitro and in vivo. RNA sequencing and metabolic analyses demonstrated that Mincle activation triggers osteoclastogenesis via ITAM-based calcium signaling pathways, skewing osteoclast metabolism toward oxidative phosphorylation. Deletion of Mincle in vivo effectively blocked the activation of osteoclasts after induction of osteocyte death, improved fracture repair, and attenuated inflammation-mediated bone loss. Furthermore, in patients with osteonecrosis, Mincle was highly expressed at skeletal sites of osteocyte death and correlated with strong osteoclastic activity. Taken together, these data point to what we believe is a novel DAMP-mediated process that allows osteoclast activation and bone loss in the context of osteocyte death.
Asunto(s)
Resorción Ósea/metabolismo , Lectinas Tipo C/metabolismo , Proteínas de la Membrana/metabolismo , Osteoclastos/metabolismo , Osteocitos/metabolismo , Animales , Resorción Ósea/genética , Resorción Ósea/patología , Lectinas Tipo C/genética , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Necrosis , Osteoclastos/patología , Osteocitos/patología , RNA-SeqRESUMEN
Janus kinase (JAK)-mediated cytokine signaling has emerged as an important therapeutic target for the treatment of inflammatory diseases such as rheumatoid arthritis (RA). Accordingly, JAK inhibitors compose a new class of drugs, among which tofacitinib and baricitinib have been approved for the treatment of RA. Periarticular bone erosions contribute considerably to the pathogenesis of RA. However, although the immunomodulatory aspect of JAK inhibition (JAKi) is well defined, the current knowledge of how JAKi influences bone homeostasis is limited. Here, we assessed the effects of the JAK inhibitors tofacitinib and baricitinib on bone phenotype (i) in mice during steady-state conditions or in mice with bone loss induced by (ii) estrogen-deficiency (ovariectomy) or (iii) inflammation (arthritis) to evaluate whether effects of JAKi on bone metabolism require noninflammatory/inflammatory challenge. In all three models, JAKi increased bone mass, consistent with reducing the ratio of receptor activator of NF-κB ligand/osteoprotegerin in serum. In vitro, effects of tofacitinib and baricitinib on osteoclast and osteoblast differentiation were analyzed. JAKi significantly increased osteoblast function (P < 0.05) but showed no direct effects on osteoclasts. Additionally, mRNA sequencing and ingenuity pathway analyses were performed in osteoblasts exposed to JAKi and revealed robust up-regulation of markers for osteoblast function, such as osteocalcin and Wnt signaling. The anabolic effect of JAKi was illustrated by the stabilization of ß-catenin. In humans with RA, JAKi induced bone-anabolic effects as evidenced by repair of arthritic bone erosions. Results support that JAKi is a potent therapeutic tool for increasing osteoblast function and bone formation.
Asunto(s)
Artritis Reumatoide , Inhibidores de las Cinasas Janus , Animales , Diferenciación Celular , Quinasas Janus , Ratones , Osteoblastos , OsteoclastosRESUMEN
Next to proinflammatory cytokines, autoimmunity has been identified as a key trigger for osteoclast activation and bone loss. IgG-rheumatoid factor (IgG-RF) immune complexes, which are present in patients with rheumatoid arthritis, were shown to boost osteoclast differentiation. To date, the regulation of IgG-RF production in the absence of inflammatory triggers is unknown. Herein, we describe Fra1 as a key checkpoint that controls IgG-RF production by plasma cells and regulates autoimmune-mediated bone loss. Fra1 deficiency in B cells (Fra1ΔBcell ) led to increased IgG1-producing bone marrow plasma cells, enhanced IgG-RF production, and increased bone loss associated with elevated osteoclast numbers after immunization. The effect of IgG-RF on osteoclasts in vitro and on osteoclasts associated with bone loss in vivo was dependent on FcγR, especially FcγR3. Furthermore, immunization of WT mice with T-cell-dependent antigens induced a significant and robust decrease in Fra1 expression in bone marrow B cells, which was followed by increased IgG1 production and the induction of osteoclast-mediated bone loss. Overall, these data identify Fra1 as a key mediator of IgG-RF production and autoimmune-mediated bone loss. © 2019 American Society for Bone and Mineral Research.
Asunto(s)
Autoanticuerpos/biosíntesis , Células de la Médula Ósea/metabolismo , Resorción Ósea/inmunología , Resorción Ósea/patología , Células Plasmáticas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Factor Reumatoide/metabolismo , Animales , Huesos/patología , Recuento de Células , Diferenciación Celular , Eliminación de Gen , Inmunidad Humoral , Inmunización , Inmunoglobulina G/metabolismo , Ratones Endogámicos C57BL , Osteoclastos/patología , Osteogénesis , Osteoporosis/inmunología , Fenotipo , Proteínas Proto-Oncogénicas c-fos/deficiencia , Receptores de IgG/deficiencia , Receptores de IgG/metabolismo , Linfocitos T/inmunologíaRESUMEN
Interference with autoimmune-mediated cytokine production is a key yet poorly developed approach to treat autoimmune and inflammatory diseases such as rheumatoid arthritis. Herein, we show that soluble CD83 (sCD83) enhances the resolution of autoimmune antigen-induced arthritis (AIA) by strongly reducing the expression levels of cytokines such as IL-17A, IFNγ, IL-6, and TNFα within the joints. Noteworthy, also the expression of RANKL, osteoclast differentiation, and joint destruction was significantly inhibited by sCD83. In addition, osteoclasts which were cultured in the presence of synovial T cells, derived from sCD83 treated AIA mice, showed a strongly reduced number of multinuclear large osteoclasts compared to mock controls. Enhanced resolution of arthritis by sCD83 was mechanistically based on IDO, since inhibition of IDO by 1-methyltryptophan completely abrogated sCD83 effects on AIA. Blocking experiments, using anti-TGF-ß antibodies further revealed that also TGF-ß is mechanistically involved in the sCD83 induced reduction of bone destruction and cartilage damage as well as enhanced resolution of inflammation. Resolution of arthritis was associated with increased numbers of regulatory T cells, which are induced in a sCD83-IDO-TGF-ß dependent manner. Taken together, sCD83 represents an interesting approach for downregulating cytokine production, inducing regulatory T cells and inducing resolution of autoimmune arthritis.
Asunto(s)
Antígenos CD/inmunología , Artritis Experimental/inmunología , Inmunoglobulinas/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Glicoproteínas de Membrana/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos Bloqueadores/farmacología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Citocinas/inmunología , Femenino , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/patología , Articulaciones/inmunología , Articulaciones/patología , Ratones , Transducción de Señal/efectos de los fármacos , Solubilidad , Linfocitos T Reguladores/patología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/inmunología , Triptófano/análogos & derivados , Triptófano/farmacología , Antígeno CD83RESUMEN
Group 2 innate lymphoid cells (ILC2s) were detected in the peripheral blood and the joints of rheumatoid arthritis (RA) patients, serum-induced arthritis (SIA), and collagen-induced arthritis (CIA) using flow cytometry. Circulating ILC2s were significantly increased in RA patients compared with healthy controls and inversely correlated with disease activity. Induction of arthritis in mice led to a fast increase in ILC2 number. To elucidate the role of ILC2 in arthritis, loss- and gain-of-function mouse models for ILC2 were subjected to arthritis. Reduction of ILC2 numbers in RORαcre/GATA3fl/fl and Tie2cre/RORαfl/fl mice significantly exacerbated arthritis. Increasing ILC2 numbers in mice by IL-25/IL-33 mini-circles or IL-2/IL-2 antibody complex and the adoptive transfer of wild-type (WT) ILC2s significantly attenuated arthritis by affecting the initiation phase. In addition, adoptive transfer of IL-4/13-competent WT but not IL-4/13-/- ILC2s and decreased cytokine secretion by macrophages. These data show that ILC2s have immune-regulatory functions in arthritis.
Asunto(s)
Artritis Reumatoide/inmunología , Huesos/patología , Inmunidad Innata , Inflamación/inmunología , Linfocitos/inmunología , Traslado Adoptivo , Animales , Artritis Reumatoide/complicaciones , Artritis Reumatoide/patología , Progresión de la Enfermedad , Humanos , Inflamación/complicaciones , Inflamación/patología , Interleucina-1beta/metabolismo , Interleucina-4/metabolismo , Interleucinas/metabolismo , Macrófagos/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Th2-eosinophil immune responses are well known for mediating host defence against helminths. Herein we describe a function of Th2-eosinophil responses in counteracting the development of arthritis. In two independent models of arthritis, Nippostrongylus brasiliensis infection leads to Th2 and eosinophil accumulation in the joints associated with robust inhibition of arthritis and protection from bone loss. Mechanistically, this protective effect is dependent on IL-4/IL-13-induced STAT6 pathway. Furthermore, we show that eosinophils play a central role in the modulation of arthritis probably through the increase of anti-inflammatory macrophages into arthritic joints. The presence of these pathways in human disease is confirmed by detection of GATA3-positive cells and eosinophils in the joints of rheumatoid arthritis patients. Taken together, these results demonstrate that eosinophils and helminth-induced activation of the Th2 pathway axis effectively mitigate the course of inflammatory arthritis.