Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Small ; 19(48): e2304326, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37537708

RESUMEN

Polyamine-based vectors offer many advantages for gene therapy, but they are hampered by a limited knowledge on their biological fate and efficacy for nucleic acid delivery. The 18 F radiolabeled siRNA is complexed with poly(allyl amine) hydrochloride (PAH), PEGylated PAH (PAHPEG ), or oleic acid-modified PAH (PAHOleic ) to form polyplexes, and injected them intravenously into healthy rodents. The biodistribution patterns obtained by positron emission tomography (PET) imaging vary according to the polymer used for complexation. Free siRNA is quickly eliminated through the bladder. PAH and oleic acid modify PAH polyplexes accumulate in the lungs and liver. No elimination through the bladder is observed for PAH and PAHOleic within 2 h after administration. PAHPEG polyplexes accumulate in kidneys and are eliminated through the bladder. Polyplexes prepared with 18 F-labeled oleic acid-modified PAH and non-labeled siRNA show similar biodistribution to those prepared with labeled siRNA, but with more accumulation in the lungs due to the presence of non-complexed polymer. Intravenous administration of PAHOleic polyplexes in tumor models results in a limited availability of siRNA. When PAHOleic polyplexes are administered intratumorally in tumor bearing rodents, ≈40% of the radioactivity is retained in the tumor after 180 min while free siRNA is completely eliminated.


Asunto(s)
Neoplasias , Ácido Oléico , Humanos , ARN Interferente Pequeño , Distribución Tisular , Tomografía de Emisión de Positrones , Polímeros , Poliaminas
2.
Org Biomol Chem ; 21(47): 9362-9371, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37975191

RESUMEN

N-Acetylgalactosamine-6-sulfatase (GALNS) is an enzyme whose deficiency is related to the lysosomal storage disease Morquio A. For the development of effective therapeutic approaches against this disease, the design of suitable enzyme enhancers (i.e. pharmacological chaperones) is fundamental. The natural substrates of GALNS are the glycosaminoglycans keratan sulfate and chondroitin 6-sulfate, which mainly display repeating units of sulfated carbohydrates. With a biomimetic approach, gold nanoparticles (AuNPs) decorated with simple monosaccharides, sulfated ligands (homoligand AuNPs), or both monosaccharides and sulfated ligands (mixed-ligand AuNPs) were designed here as multivalent inhibitors of GALNS. Among the homoligand AuNPs, the most effective inhibitors of GALNS activity are the ß-D-galactoside-coated AuNPs. In the case of mixed-ligand AuNPs, ß-D-galactosides/sulfated ligands do not show better inhibition than the ß-D-galactoside-coated AuNPs. However, a synergistic effect is observed for α-D-mannosides in a mixed-ligand coating with sulfated ligands that reduced IC50 by one order of magnitude with respect to the homoligand α-D-mannoside-coated AuNPs. SAXS experiments corroborated the association of GALNS with ß-D-galactoside AuNPs. These AuNPs are able to restore the enzyme activity by almost 2-fold after thermal denaturation, indicating a potential chaperoning activity towards GALNS. This information could be exploited for future development of nanomedicines for Morquio A. The recent implications of GALNS in cancer and neuropathic pain make these kinds of multivalent bionanomaterials of great interest towards multiple therapies.


Asunto(s)
Condroitinsulfatasas , Nanopartículas del Metal , Oro , Acetilgalactosamina , Monosacáridos , Ligandos , Sulfatos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Lisosomas
3.
Small ; 17(35): e2102211, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34278713

RESUMEN

An approach for reducing toxicity and enhancing therapeutic potential of supramolecular polyamine phosphate nanoparticles (PANs) through PEGylation of polyamines before their assembly into nanoparticles is presented here. It is shown that the number of polyethylene glycol (PEG) chains for polyamine largely influence physico-chemical properties of PANs and their biological endpoints. Poly(allylamine hydrochloride) (PAH) are functionalized through carbodiimide chemistry with three ratios of PEG molecules per PAH chain: 0.1, 1, and 10. PEGylated PAH is then assembled into PANs by exposing the polymer to phosphate buffer solution. PANs decrease size and surface charge with increasing PEG ratios as evidenced by dynamic light scattering and zeta potential measurements, with the ten PEG/PAH ratio PANs having practically zero charge. Small angle X-ray scattering (SAXS) proves that PEG chains form a shell around a polyamine core, which is responsible for the screening of positive charges. MTT experiments show that the screening of amine groups decreases nanoparticle toxicity, with the lowest toxicity for the 10 PEG/PAH ratio. Fluorescence correlation spectroscopy (FCS) proves less interaction with proteins for PEGylated PANs. Positron emission tomography (PET) imaging of 18 F labelled PANs shows longer circulation time in healthy mice for PEGylated PANs than non-PEGylated ones.


Asunto(s)
Nanopartículas , Fosfatos , Animales , Ratones , Nanopartículas/toxicidad , Poliaminas/toxicidad , Polietilenglicoles , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Int J Mol Sci ; 21(3)2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32033502

RESUMEN

The deposition of amyloid-ß (Aß) plaques in the brain is a significant pathological signature of Alzheimer's disease, correlating with synaptic dysfunction and neurodegeneration. Several compounds, peptides, or drugs have been designed to redirect or stop Aß aggregation. Among them, the trideca-peptide CWG-LRKLRKRLLR (mApoE), which is derived from the receptor binding sequence of apolipoprotein E, is effectively able to inhibit Aß aggregation and to promote fibril disaggregation. Taking advantage of Atomic Force Microscopy (AFM) imaging and fluorescence techniques, we investigate if the clustering of mApoE on gold nanoparticles (AuNP) surface may affect its performance in controlling Aß aggregation/disaggregation processes. The results showed that the ability of free mApoE to destroy preformed Aß fibrils or to hinder the Aß aggregation process is preserved after its clustering on AuNP. This allows the possibility to design multifunctional drug delivery systems with clustering of anti-amyloidogenic molecules on any NP surface without affecting their performance in controlling Aß aggregation processes.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Apolipoproteínas E/metabolismo , Nanopartículas del Metal/química , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Encéfalo/metabolismo , Análisis por Conglomerados , Oro/química , Humanos , Placa Amiloide/metabolismo , Unión Proteica/fisiología
5.
Beilstein J Org Chem ; 16: 2272-2281, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983271

RESUMEN

Mechanochemistry is an emerging and reliable alternative to conventional solution (batch) synthesis of complex molecules under green and solvent-free conditions. In this regard, we report here on the conjugation of a dextran polysaccharide with a fluorescent probe, a phenylboronic acid (PBA)-functionalized boron dipyrromethene (BODIPY) applying the ball milling approach. The ball milling formation of boron esters between PBA BODIPY and dextran proved to be more efficient in terms of reaction time, amount of reactants, and labelling degree compared to the corresponding solution-based synthetic route. PBA-BODIPY dextran assembles into nanoparticles of around 200 nm by hydrophobic interactions. The resulting PBA-BODIPY dextran nanoparticles retain an apolar interior as proved by pyrene fluorescence, suitable for the encapsulation of hydrophobic drugs with high biocompatibility while remaining fluorescent.

6.
Nat Mater ; 17(2): 195-203, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29251725

RESUMEN

Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism.  These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.


Asunto(s)
Antivirales , Materiales Biomiméticos , Herpes Simple/tratamiento farmacológico , Herpesvirus Humano 2/metabolismo , Nanopartículas , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/metabolismo , Animales , Antivirales/química , Antivirales/farmacología , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Proteoglicanos de Heparán Sulfato/química , Proteoglicanos de Heparán Sulfato/farmacología , Herpes Simple/metabolismo , Herpes Simple/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Nanopartículas/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/patología
7.
Langmuir ; 35(44): 14300-14309, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31596094

RESUMEN

The interaction of polyamine poly(allylamine hydrochloride) with Na3PO4, Na4P2O7, Na5P3O10, Na6P6O18, and (NaPO3)26 salts and the formation of polyamine phosphate nanoparticles (PANs) are studied here. Dynamic light scattering, isothermal titration calorimetry (ITC), electrophoretical mobility measurements, atomic force microscopy, and transmission electron microscopy are used to explore the formation, stability, and pH sensitivity of PANs. An optimal concentration for PAN formation is found for each phosphate salt in terms of the most stable size and lowest polydispersity index of the nanoparticles. The minimal concentration of phosphate ions for PAN formation decreases with the increasing number of phosphate groups per phosphate salt. ITC measurements show that all polyphosphates display a characteristic endothermic peak, which is not present when monophosphates are used for PAN formation. pH stability of PANs depends on the type of phosphate salt. PANs formed with small phosphates show a small window of stability with pH from 8 to 9, while those formed with long phosphates are stable in more acidic pH environments. Our findings open multiple possibilities for fine-tuning the pH sensitivity of PANs by varying phosphate salts for potential applications in drug delivery.

8.
Soft Matter ; 13(47): 8922-8929, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29143830

RESUMEN

Supported membranes on polymer cushions are of fundamental interest as models for cell membranes. The use of polyelectrolyte multilayers (PEMs) assembled by the layer by layer (LbL) technique as supports for a bilayer allows for easy integration of the lipid bilayer on surfaces and devices and for nanoscale tunable spacing of the lipid bilayer. Controlling ionic permeability in lipid bilayers supported on PEMs triggers potential applications in sensing and as models for transport phenomena in cell membranes. Lipid bilayers displaying gramicidin channels are fabricated on top of polyallylamine hydrochloride (PAH) and polystyrene sulfonate (PSS) multilayer films, by the assembly of vesicles of phosphatidylcholine and phosphatidylserine, 50 : 50 M/M, carrying gramicidin (GA). Quartz crystal microbalance with dissipation shows that the vesicles with GA fuse into a bilayer. Atomic force microscopy reveals that the presence of GA alters the bilayer topography resulting in depressions in the bilayer of around 70 nm in diameter. Electrochemical impedance spectroscopy (EIS) studies show that supported bilayers carrying GA have smaller resistances than the bilayers without GA. Lipid layers carrying GA display a higher conductance for K+ than for Na+ and are blocked in the presence of Ca2+.

9.
Part Fibre Toxicol ; 14(1): 42, 2017 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-29084556

RESUMEN

BACKGROUND: We previously showed that cerium oxide (CeO2), barium sulfate (BaSO4) and zinc oxide (ZnO) nanoparticles (NPs) exhibited different lung toxicity and pulmonary clearance in rats. We hypothesize that these NPs acquire coronas with different protein compositions that may influence their clearance from the lungs. METHODS: CeO2, silica-coated CeO2, BaSO4, and ZnO NPs were incubated in rat lung lining fluid in vitro. Then, gel electrophoresis followed by quantitative mass spectrometry was used to characterize the adsorbed proteins stripped from these NPs. We also measured uptake of instilled NPs by alveolar macrophages (AMs) in rat lungs using electron microscopy. Finally, we tested whether coating of gold NPs with albumin would alter their lung clearance in rats. RESULTS: We found that the amounts of nine proteins in the coronas formed on the four NPs varied significantly. The amounts of albumin, transferrin and α-1 antitrypsin were greater in the coronas of BaSO4 and ZnO than that of the two CeO2 NPs. The uptake of BaSO4 in AMs was less than CeO2 and silica-coated CeO2 NPs. No identifiable ZnO NPs were observed in AMs. Gold NPs coated with albumin or citrate instilled into the lungs of rats acquired the similar protein coronas and were cleared from the lungs to the same extent. CONCLUSIONS: We show that different NPs variably adsorb proteins from the lung lining fluid. The amount of albumin in the NP corona varies as does NP uptake by AMs. However, albumin coating does not affect the translocation of gold NPs across the air-blood barrier. A more extensive database of corona composition of a diverse NP library will develop a platform to help predict the effects and biokinetics of inhaled NPs.


Asunto(s)
Sulfato de Bario/metabolismo , Cerio/metabolismo , Oro/metabolismo , Pulmón/metabolismo , Nanopartículas del Metal , Corona de Proteínas , Óxido de Zinc/metabolismo , Adsorción , Animales , Sulfato de Bario/química , Sulfato de Bario/toxicidad , Barrera Alveolocapilar/metabolismo , Cerio/química , Cerio/toxicidad , Oro/química , Oro/farmacocinética , Oro/toxicidad , Macrófagos Alveolares/metabolismo , Masculino , Nanopartículas del Metal/química , Ratas Wistar , Albúmina Sérica Humana/metabolismo , Propiedades de Superficie , Transferrina/metabolismo , Óxido de Zinc/química , Óxido de Zinc/toxicidad , alfa 1-Antitripsina/metabolismo
10.
Nanoscale ; 16(7): 3525-3533, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38273800

RESUMEN

A deeper knowledge on the formation and biological fate of polymer based gene vectors is needed for their translation into therapy. Here, polyplexes of polyethyleneimine (PEI) and silencing RNA (siRNA) are formed with theoretical N/P ratios of 2, 4 and 12. Fluorescence correlation spectroscopy (FCS) is used to study the formation of polyplexes from fluorescently labelled PEI and siRNA. FCS proves the presence of free PEI. From the analysis of the autocorrelation functions it was possible to determine the actual stoichiometry of polyplexes. FCS and fluorescence cross correlation spectroscopy (FCCS) are used to follow the fate of the polyplexes intracellularly. Polyplexes disassemble after 1 day inside cells. Positron emission tomography (PET) studies are conducted with radiolabelled polyplexes prepared with siRNA or PEI labelled with 2,3,5,6-tetrafluorophenyl 6-[18F]-fluoronicotinate ([18F]F-PyTFP). PET studies in healthy mice show that [18F]siRNA/PEI and siRNA/[18F]PEI polyplexes show similar biodistribution patterns with limited circulation in the bloodstream and accumulation in the liver. Higher activity for [18F]PEI in the kidney and bladder suggests the presence of free PEI.


Asunto(s)
Polietileneimina , ARN Bicatenario , Animales , Ratones , Polietileneimina/química , ARN Interferente Pequeño/química , Distribución Tisular , Espectrometría de Fluorescencia , Tomografía de Emisión de Positrones
11.
Nanoscale Horiz ; 9(7): 1211-1218, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38775782

RESUMEN

A hybrid cellulose-based programmable nanoplatform for applications in precision radiation oncology is described. Here, sugar heads work as tumor targeting moieties and steer the precise delivery of radiosensitizers, i.e. gold nanoparticles (AuNPs) into triple negative breast cancer (TNBC) cells. This "Trojan horse" approach promotes a specific and massive accumulation of radiosensitizers in TNBC cells, thus avoiding the fast turnover of small-sized AuNPs and the need for high doses of AuNPs for treatment. Application of X-rays resulted in a significant increase of the therapeutic effect while delivering the same dose, showing the possibility to use roughly half dose of X-rays to obtain the same radiotoxicity effect. These data suggest that this hybrid nanoplatform acts as a promising tool for applications in enhancing cancer radiotherapy effects with lower doses of X-rays.


Asunto(s)
Celulosa , Oro , Nanopartículas del Metal , Fármacos Sensibilizantes a Radiaciones , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fármacos Sensibilizantes a Radiaciones/química , Oro/química , Celulosa/química , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/efectos de la radiación , Línea Celular Tumoral , Femenino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos
12.
Mol Pharm ; 10(3): 875-82, 2013 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-23190092

RESUMEN

The field of nanotheranostics encompasses the integration of nanosized carriers in cancer imaging, diagnosis, and therapy. The use of nanomedicines for theranostic application typically depends on direct visualization of the nanocarriers. Normally fluorescent probes are attached to nanocarriers for biodistribution measurement through fluorescence imaging. However continued, noninvasive assurance that the fluorescent probe remains bound to the carrier has proven elusive. Mature erythrocytes, also known as red blood cells, are incapable of endocytosis. As a consequence, when incubated with fluorescently labeled particles, they do not show any signal coming from the membrane or the cytoplasm. Yet, these cells readily take up free BODIPY fluorescent dyes into their membranes. Here we show that incubation of nanoparticles with erythrocytes is a rapid and reliable method for the detection of unbound dye present within a nanoparticle sample, as the detection of a fluorescent signal coming from the cells can only be due to unbound dye present in the sample. We test the method on both sulfonate and PEG terminated gold nanoparticles, and we determine the minimum concentration of detectable dye for a specific gold nanoparticle sample.


Asunto(s)
Eritrocitos , Nanopartículas/química , Células Cultivadas , Colorantes Fluorescentes , Células HeLa , Humanos , Nanotecnología
13.
ACS Appl Bio Mater ; 6(2): 529-542, 2023 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-36647574

RESUMEN

Small interference RNA (siRNA) is a tool for gene modulation, which can silence any gene involved in genetic disorders. The potential of this therapeutic tool is hampered by RNA instability in the blood stream and difficulties to reach the cytosol. Polyamine-based nanoparticles play an important role in gene delivery. Polyallylamine hydrochloride (PAH) is a polycation displaying primary amines that can be easily chemically modified to match the balance between cell viability and siRNA transfection. In this work, PAH has been covalently functionalized with oleic acid at different molar ratios by carbodiimide chemistry. The substituted polymers form polyplexes that keep positive surface charge and fully encapsulate siRNA. Oleic acid substitution improves cell viability in the pulmonary cell line A549. Moreover, 6 and 14% of oleic acid substitution show an improvement in siRNA transfection efficiency. CD47 is a ubiquitous protein which acts as "don't eat me signal." SIRPα protein of macrophages recognizes CD47, leading to tumor cell phagocytosis by macrophages. By knocking down CD47 with siRNA, cancer cells become vulnerable to be eliminated by the immune system. PAH-oleic acid substitutes show high efficacy in silencing the CD47 protein, making them a potential candidate for immunotherapy.


Asunto(s)
Antígeno CD47 , Ácido Oléico , ARN Interferente Pequeño , Antígeno CD47/genética , Antígeno CD47/metabolismo , ARN Bicatenario , Transfección
14.
Nanoscale Horiz ; 8(6): 776-782, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-36951189

RESUMEN

Cellulose nanocrystal and gold nanoparticles are assembled, in a unique way, to yield a novel modular glyconanomaterial whose surface is then easily engineered with one or two different headgroups, by exploiting a robust click chemistry route. We demonstrate the potential of this approach by conjugating monosaccharide headgroups to the glyconanomaterial and show that the sugars retain their binding capability to C-type lectin receptors, as also directly visualized by cryo-TEM.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Oro/química , Celulosa/química , Química Clic , Lectinas Tipo C
15.
J Colloid Interface Sci ; 607(Pt 1): 153-162, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34506997

RESUMEN

HYPOTHESIS: Polarity in polyelectrolyte multilayers (PEMs) may vary from the inner to the top layers of the film as the charge compensation of the layers is more effective inside the PEMs than in outer layers. Doxorubicin hydrochloride (DX) is used here to sense polarity at the single polyelectrolyte level inside PEMS. EXPERIMENTAL: DX is complexed electrostatically to a polyanion, either polystyrene sulfonate (PSS) or polyacrylic acid (PAA) and assembled at selected positions in a multilayer of the polyanion and polyallylamine hydrochloride (PAH) as polycation. Local polarity in the layer domain is evaluated through changes in the intensity ratio of the first to second band of spectra of DX (I1/I2 ratio) by steady state fluorescence, and by Lifetime fluorescence. FINDINGS: PAH/PSS multilayers, show a polarity similar to water with DX/PSS as top layer, decreasing to I1/I2 ratios similar to organic solvents as the number of polyelectrolyte layers assembled on top increases. For PAH/PAA multilayers, polarity values reflect a more polar environment than water when DX/PAA is the top layer, remaining unaltered by the assembly of polyelectrolyte layers on top. Results show that different polar environments may be present in a PEM when considering polarity at the single layer level.


Asunto(s)
Doxorrubicina , Agua , Fluorescencia , Fenómenos Físicos , Polielectrolitos
16.
Colloids Surf B Biointerfaces ; 219: 112797, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36063718

RESUMEN

The degradation of mesoporous silica nanoparticles (MSNs) in the biological milieu due to silica hydrolysis plays a fundamental role for the delivery of encapsulated drugs and therapeutics. However, little is known on the evolution of the pore arrangement in the MSNs in biologically relevant conditions. Small Angle X-ray scattering (SAXS) studies were performed on unmodified and PEGylated MSNs with a MCM-48 pore structure and average sizes of 140 nm, exposed to simulated body fluid solution (SBF) at pH 7.4 for different time intervals from 30 min to 24 h. Experiments were performed with silica concentrations below, at and over 0.14 mg/mL, the saturation concentration of silica in water at physiological temperature. At silica concentrations of 1 mg/mL (oversaturation), unmodified MSNs show variation in interpore distances over 6 h exposure to SBF, remaining constant thereafter. A decrease in radius of gyration is observed over the same time. Mesoporosity and radius of gyration of unmodified MSNs remain then unchanged up to 24 h. PEGylated MSNs at 1 mg/mL concentration show a broader diffraction peak but no change in the position of the peak is observed following 24 h exposure to SBF. PEGylated MSNs at 0.01 mg/mL show no diffraction peaks already after 30 min exposure to SBF, while at 0.14 mg/mL a small diffraction peak is present after 30 min exposure but disappears after 1 h.

17.
Nanomedicine (Lond) ; 17(3): 167-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35048742

RESUMEN

Aim: To develop a new curcumin carrier consisting of murumuru butter nanoparticles (SLN-Cs). Methods: A phase-inversion temperature method was used to produce SLN-Cs. The interaction of SLN-Cs with murine colon adenocarcinoma (CT26) cells in vitro was analyzed by confocal microscopy. Results: Stable SLN-Cs with a high curcumin-loading capacity were obtained. The SLN-Cs were more toxic to CT26 than free curcumin. Fluorescence microscopy images showed the SLN-Cs to be taken up by CT26 cells in vitro. Conclusion: These results indicate that SLN-Cs are suitable carriers of curcumin in aqueous media.


Asunto(s)
Curcumina , Nanopartículas , Animales , Portadores de Fármacos , Lípidos , Liposomas , Ratones , Nanopartículas/toxicidad , Tamaño de la Partícula
18.
Bioelectrochemistry ; 138: 107688, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33227594

RESUMEN

Supported Lipid Bilayers (SLBs) on Polyelectrolyte Multilayers (PEMs) have large potential as models for developing sensor devices. SLBs can be designed with receptors and channels, which benefit from the biological environment of the lipid layers, to create a sensing interface for ions and biomarkers. PEMs assembled by the Layer-by-Layer (LBL) technique and used as supports for a lipid bilayer enable an easy integration of the bilayer on almost any surface and device. For electrochemical sensors, LBL assembly enables nanoscale tunable separation of the lipid bilayer from the electrode surface, avoiding undesired effects of the electrode surface on the lipid bilayers. We study the fabrication of valinomycin-doped SLBs on PEMs as a model system for biophysical studies and for selective ion sensing. SLBs are fabricated from dioleoylphosphatidylcholine (DOPC) and dioleoylphosphatidylserine (DOPS) 50:50 vesicles doped with valinomycin, as a K+-selective carrier. SLBs were deposited on electrodes coated with poly(allyl amine hydrochloride) (PAH) and poly(styrene sodium sulfonate) (PSS) multilayers. Lipid bilayer formation was monitored by using Quartz Crystal Microbalance with Dissipation (QCMD) technique and Atomic Force Microscopy (AFM). Electrochemical impedance spectroscopy (EIS) and potentiometric measurements were performed to assess K+ selectivity over other ions and the potential of valinomycin-doped SLBs for K+-sensing.


Asunto(s)
Electricidad , Membrana Dobles de Lípidos/química , Polielectrolitos/química , Valinomicina/química , Electrodos , Fosfatidilcolinas/química , Propiedades de Superficie
19.
J Colloid Interface Sci ; 579: 551-561, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32623121

RESUMEN

HYPOTHESIS: Doxorubicin hydrochloride (DX) is widely used as a chemotherapeutic agent, though its severe side-effects limit its clinical use. A way to overcome these limitations is to increase DX latency through encapsulation in suitable carriers. However, DX has a high solubility in water, hindering encapsulation. The formulation of DX with sodium cholate (NaC) will reduce aqueous solubility through charge neutralization and hydrophobic interactions thus facilitating DX encapsulation into poloxamer (F127) micelles, increasing drug latency. EXPERIMENTS: DX/NaC/PEO-PPO-PEO triblock copolymer (F127) formulations with high DX content (DX-PMs) have been prepared and characterized by scattering techniques, transmission electron microscopy and fluorescence spectroscopy. Cell proliferation has been evaluated after DX-PMs uptake in three cell lines (A549, Hela, 4T1). Cell uptake of DX has been studied by means of confocal laser scanning microscopy and flow cytometry. FINDINGS: DX-PMs formulations result in small and stable pluronic micelles, with the drug located in the apolar core of the polymeric micelles. Cell proliferation assays show a delayed cell toxicity for the encapsulated DX compared with the free drug. Data show a good correlation between cytotoxic response and slow DX delivery to nuclei. DX-PMs offer the means to restrict DX delivery to the cell interior in a highly stable and biocompatible formulation, suitable for cancer therapy.


Asunto(s)
Micelas , Poloxámero , Disponibilidad Biológica , Doxorrubicina/farmacología , Polietilenglicoles , Colato de Sodio
20.
J Phys Chem B ; 113(18): 6321-7, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19402726

RESUMEN

We report on mixing an anionic diacyl phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphate monosodium salt, DPPA) with either monoacyl and diacyl arginine-based surfactants. These mixtures are part of the rich family of pseudo-triple-chain and pseudo-tetra-chain catanionic mixtures, respectively. Vesicle size and zeta-potential were measured at several mixing ratios. Additional information on counterion binding, vesicle size, and integrity was obtained from ion selective electrode and Cryo-TEM measurements. Addition of positively charged surfactants to DPPA results in an increase of vesicle size. However, zeta-potential shows different trends, depending on whether water or acid media are used as solvent. In the latter, zeta-potential values progressively approach 0 upon addition of amino acid based surfactants. In water, surprisingly, zeta-potential values become more negative. The results are discussed in terms of modifications in counterion binding and vesicle size.


Asunto(s)
Arginina/química , Ácidos Fosfatidicos/química , Tensoactivos/química , Aniones , Cationes , Microscopía por Crioelectrón/métodos , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA