Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Transfusion ; 64(4): 638-645, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38506497

RESUMEN

BACKGROUND: Healthcare activities significantly contribute to greenhouse gas (GHG) emissions. Blood transfusions require complex, interlinked processes to collect, manufacture, and supply. Their contribution to healthcare emissions and avenues for mitigation is unknown. STUDY DESIGN AND METHODS: We performed a life cycle assessment (LCA) for red blood cell (RBC) transfusions across England where 1.36 million units are transfused annually. We defined the process flow with seven categories: donation, transportation, manufacturing, testing, stockholding, hospital transfusion, and disposal. We used direct measurements, manufacturer data, bioengineering databases, and surveys to assess electrical power usage, embodied carbon in disposable materials and reagents, and direct emissions through transportation, refrigerant leakage, and disposal. RESULTS: The central estimate of carbon footprint per unit of RBC transfused was 7.56 kg CO2 equivalent (CO2eq). The largest contribution was from transportation (2.8 kg CO2eq, 36% of total). The second largest was from hospital transfusion processes (1.9 kg CO2eq, 26%), driven mostly by refrigeration. The third largest was donation (1.3 kg CO2eq, 17%) due to the plastic blood packs. Total emissions from RBC transfusion are ~10.3 million kg CO2eq/year. DISCUSSION: This is the first study to estimate GHG emissions attributable to RBC transfusion, quantifying the contributions of each stage of the process. Primary areas for mitigation may include electric vehicles for the blood service fleet, improving the energy efficiency of refrigeration, using renewable sources of electricity, changing the plastic of blood packs, and using methods of disposal other than incineration.


Asunto(s)
Huella de Carbono , Efecto Invernadero , Humanos , Animales , Transfusión Sanguínea , Estadios del Ciclo de Vida , Inglaterra
2.
Bioorg Med Chem Lett ; 49: 128290, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34311087

RESUMEN

While the biochemistry of rhomboid proteases has been extensively studied since their discovery two decades ago, efforts to define the physiological roles of these enzymes are ongoing and would benefit from chemical probes that can be used to manipulate the functions of these proteins in their native settings. Here, we describe the use of activity-based protein profiling (ABPP) technology to conduct a targeted screen for small-molecule inhibitors of the mitochondrial rhomboid protease PARL, which plays a critical role in regulating mitophagy and cell death. We synthesized a series of succinimide-containing sulfonyl esters and sulfonamides and discovered that these compounds serve as inhibitors of PARL with the most potent sulfonamides having submicromolar affinity for the enzyme. A counterscreen against the bacterial rhomboid protease GlpG demonstrates that several of these compounds display selectivity for PARL over GlpG by as much as two orders of magnitude. Both the sulfonyl ester and sulfonamide scaffolds exhibit reversible binding and are able to engage PARL in mammalian cells. Collectively, our findings provide encouraging precedent for the development of PARL-selective inhibitors and establish N-[(arylsulfonyl)oxy]succinimides and N-arylsulfonylsuccinimides as new molecular scaffolds for inhibiting members of the rhomboid protease family.


Asunto(s)
Bencenosulfonatos/farmacología , Metaloproteasas/antagonistas & inhibidores , Proteínas Mitocondriales/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , Succinimidas/farmacología , Sulfonamidas/farmacología , Bencenosulfonatos/síntesis química , Proteínas de Unión al ADN/antagonistas & inhibidores , Endopeptidasas , Escherichia coli/enzimología , Proteínas de Escherichia coli/antagonistas & inhibidores , Células HEK293 , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Inhibidores de Proteasas/síntesis química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Succinimidas/síntesis química , Sulfonamidas/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA