Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Parasitol ; 258: 108716, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340779

RESUMEN

There are more than 240 million cases of malaria and 600,000 associated deaths each year, most due to infection with Plasmodium falciparum parasites. While malaria treatment options exist, new drugs with novel modes of action are needed to address malaria parasite drug resistance. Protein lysine deacetylases (termed HDACs) are important epigenetic regulatory enzymes and prospective therapeutic targets for malaria. Here we report the antiplasmodial activity of a panel of 17 hydroxamate zinc binding group HDAC inhibitors with alkoxyamide linkers and different cap groups. The two most potent compounds (4a and 4b) were found to inhibit asexual P. falciparum growth with 50% inhibition concentrations (IC50's) of 0.07 µM and 0.09 µM, respectively, and demonstrated >200-fold more selectivity for P. falciparum parasites versus human neonatal foreskin fibroblasts (NFF). In situ hyperacetylation studies demonstrated that 4a, 4b and analogs caused P. falciparum histone H4 hyperacetylation, suggesting HDAC inhibition, with structure activity relationships providing information relevant to the design of new Plasmodium-specific aliphatic chain hydroxamate HDAC inhibitors.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Animales , Recién Nacido , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium falciparum , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Antimaláricos/uso terapéutico
2.
J Nat Prod ; 86(12): 2661-2671, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37972998

RESUMEN

Chemical investigation of the antimalarial medicinal plant Clerodendrum polycephalum led to the isolation of five new diterpenoids, including ajugarins VII-X (1-4) and teuvincenone K (5), along with four known compounds, namely, 12,16-epoxy-6,11,14,17-tetrahydroxy-17(15 → 16)-abeo-5,8,11,13,15-abietapentaen-7-one (6), methyl pheophorbide A (7), loliolide (8), and acacetin (9). The chemical structures of the new compounds were elucidated using NMR spectroscopy, mass spectrometry, circular dichroism, as well as density functional theory calculations. All compounds were evaluated for in vitro activity against Plasmodium falciparum 3D7 malaria parasites with methyl pheophorbide A (7) showing the strongest activity (IC50 4.49 µM). Subsequent in vivo testing in a Plasmodium berghei chemosuppression model showed that compound 7 significantly attenuated peripheral blood parasitemia, leading to 79% and 87% chemosuppression following oral doses at 10 and 20 mg/kg, respectively.


Asunto(s)
Antimaláricos , Clerodendrum , Malaria , Parásitos , Animales , Malaria/tratamiento farmacológico , Malaria/parasitología , Plasmodium falciparum , Extractos Vegetales/química , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium berghei
3.
Artículo en Inglés | MEDLINE | ID: mdl-32660986

RESUMEN

Given that aminoglycosides, such as amikacin, may be used for multidrug-resistant Pseudomonas aeruginosa infections, optimization of therapy is paramount for improved treatment outcomes. This study aims to investigate the pharmacodynamics of different simulated intravenous amikacin doses on susceptible P. aeruginosa to inform ventilator-associated pneumonia (VAP) and sepsis treatment choices. A hollow-fiber infection model with two P. aeruginosa isolates (MICs of 2 and 8 mg/liter) with an initial inoculum of ∼108 CFU/ml was used to test different amikacin dosing regimens. Three regimens (15, 25, and 50 mg/kg) were tested to simulate a blood exposure, while a 30 mg/kg regimen simulated the epithelial lining fluid (ELF) for potential respiratory tract infection. Data were described using a semimechanistic pharmacokinetic/pharmacodynamic (PK/PD) model. Whole-genome sequencing was used to identify mutations associated with resistance emergence. While bacterial density was reduced by >6 logs within the first 12 h in simulated blood exposures following this initial bacterial kill, there was amplification of a resistant subpopulation with ribosomal mutations that were likely mediating amikacin resistance. No appreciable bacterial killing occurred with subsequent doses. There was less (<5 log) bacterial killing in the simulated ELF exposure for either isolate tested. Simulation studies suggested that a dose of 30 and 50 mg/kg may provide maximal bacterial killing for bloodstream and VAP infections, respectively. Our results suggest that amikacin efficacy may be improved with the use of high-dose therapy to rapidly eliminate susceptible bacteria. Subsequent doses may have reduced efficacy given the rapid amplification of less-susceptible bacterial subpopulations with amikacin monotherapy.


Asunto(s)
Amicacina , Infecciones por Pseudomonas , Amicacina/farmacología , Aminoglicósidos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética
4.
Exp Parasitol ; 198: 7-16, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30682336

RESUMEN

Plasmodium falciparum histone deacetylases (PfHDACs) are an important class of epigenetic regulators that alter protein lysine acetylation, contributing to regulation of gene expression and normal parasite growth and development. PfHDACs are therefore under investigation as drug targets for malaria. Despite this, our understanding of the biological roles of these enzymes is only just beginning to emerge. In higher eukaryotes, HDACs function as part of multi-protein complexes and act on both histone and non-histone substrates. Here, we present a proteomics analysis of PfHDAC1 immunoprecipitates, identifying 26 putative P. falciparum complex proteins in trophozoite-stage asexual intraerythrocytic parasites. The co-migration of two of these (P. falciparum heat shock proteins 70-1 and 90) with PfHDAC1 was validated using Blue Native PAGE combined with Western blot. These data provide a snapshot of possible PfHDAC1 interactions and a starting point for future studies focused on elucidating the broader function of PfHDACs in Plasmodium parasites.


Asunto(s)
Histona Desacetilasa 1/análisis , Plasmodium falciparum/enzimología , Proteómica , Proteínas Protozoarias/química , Western Blotting , Electroforesis en Gel de Poliacrilamida , Histona Desacetilasa 1/química , Inmunoprecipitación , Espectrometría de Masas/métodos
5.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27467575

RESUMEN

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Asunto(s)
Antimaláricos/uso terapéutico , Conjuntos de Datos como Asunto , Descubrimiento de Drogas/métodos , Malaria/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequeñas
6.
FASEB J ; 31(10): 4515-4532, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28687609

RESUMEN

As a result of limited classes of anthelmintics and an over-reliance on chemical control, there is a great need to discover new compounds to combat drug resistance in parasitic nematodes. Here, we show that deguelin, a plant-derived rotenoid, selectively and potently inhibits the motility and development of nematodes, which supports its potential as a lead candidate for drug development. Furthermore, we demonstrate that deguelin treatment significantly increases gene transcription that is associated with energy metabolism, particularly oxidative phosphorylation and mitoribosomal protein production before inhibiting motility. Mitochondrial tracking confirmed enhanced oxidative phosphorylation. In accordance, real-time measurements of oxidative phosphorylation in response to deguelin treatment demonstrated an immediate decrease in oxygen consumption in both parasitic (Haemonchus contortus) and free-living (Caenorhabditis elegans) nematodes. Consequently, we hypothesize that deguelin is exerting its toxic effect on nematodes as a modulator of oxidative phosphorylation. This study highlights the dynamic biologic response of multicellular organisms to deguelin perturbation.-Preston, S., Korhonen, P. K., Mouchiroud, L., Cornaglia, M., McGee, S. L., Young, N. D., Davis, R. A., Crawford, S., Nowell, C., Ansell, B. R. E., Fisher, G. M., Andrews, K. T., Chang, B. C. H., Gijs, M. A. M., Sternberg, P. W., Auwerx, J., Baell, J., Hofmann, A., Jabbar, A., Gasser, R. B. Deguelin exerts potent nematocidal activity via the mitochondrial respiratory chain.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Rotenona/análogos & derivados , Animales , Antihelmínticos/farmacología , Caenorhabditis elegans/genética , Resistencia a Medicamentos/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Rotenona/farmacología
7.
J Org Chem ; 82(24): 13313-13323, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29124922

RESUMEN

Three new isocyanoditerpenes (5-7) have been characterized from Australian specimens of the nudibranch Phyllidiella pustulosa. The planar structure and (3R,6S,7R) absolute configuration of pustulosaisonitrile-1 were deduced by spectroscopic analyses at 900 MHz informed by molecular modeling, DFT calculations, and computational NMR chemical shift predictions and by comparison of experimental electronic circular dichroism (ECD) data with TDDFT-ECD calculations for the truncated model compound 8. A catalyst-controlled enantio- and diastereoselective total synthesis of the two most likely diastereomeric candidates for the structure of 5 solidified its (3R,6S,7R,10S,11R,14R) absolute configuration. Three individual enantioselective methods provided stereochemical control at key positions, permitting an unambiguous final structural assignment. Isocyanide 5 and synthetic diastereomers 5a and 5c showed activity against Plasmodium falciparum malaria parasites (IC50 ∼1 µM).


Asunto(s)
Antimaláricos/química , Plasmodium falciparum/efectos de los fármacos , Triazinas/química , Animales , Antimaláricos/farmacología , Catálisis , Gastrópodos/química , Concentración 50 Inhibidora , Estructura Molecular , Estereoisomerismo
8.
Arch Pharm (Weinheim) ; 350(3-4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28317157

RESUMEN

Despite recent declines in mortality, malaria remains an important global health problem. New therapies are needed, including new drugs with novel modes of action compared to existing agents. Among new potential therapeutic targets for malaria, inhibition of parasitic histone deacetylases (HDACs) is a promising approach. Homology modeling of PfHDAC1, a known target of some anti-plasmodial HDAC inhibitors, revealed a unique threonine residue at the rim of the active site in close proximity to the location of the cap group of vorinostat-type HDAC inhibitors. Aiming to obtain HDAC inhibitors with potent and preferential anti-plasmodial activity, we synthesized a mini-library of alkoxyamide-based HDAC inhibitors containing hydrogen bond acceptors in the cap group. Using a 5-step synthetic route, 12 new inhibitors were synthesized and assayed against Plasmodium falciparum asexual blood stage parasites (clones 3D7 and Dd2) and human cells (HepG2). The most active compound 6h (Pf3D7 IC50 : 0.07 µM; PfDd2 IC50 : 0.07 µM) was 25-fold more toxic against the parasite versus human HepG2 cells. Selected compounds were shown to cause hyperacetylation of P. falciparum histone H4, indicating inhibition of one or more PfHDACs.


Asunto(s)
Alcoholes/farmacología , Amidas/farmacología , Antimaláricos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Plasmodium falciparum/efectos de los fármacos , Alcoholes/síntesis química , Alcoholes/química , Amidas/síntesis química , Amidas/química , Antimaláricos/síntesis química , Antimaláricos/química , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Modelos Moleculares , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
9.
Antimicrob Agents Chemother ; 60(7): 4361-3, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27114276

RESUMEN

The zoonotic malaria parasite Plasmodium knowlesi has recently been established in continuous in vitro culture. Here, the Plasmodium falciparum [(3)H]hypoxanthine uptake assay was adapted for P. knowlesi and used to determine the sensitivity of this parasite to chloroquine, cycloguanil, and clindamycin. The data demonstrate that P. knowlesi is sensitive to all drugs, with 50% inhibitory concentrations (IC50s) consistent with those obtained with P. falciparum This assay provides a platform to use P. knowlesi in vitro for drug discovery.


Asunto(s)
Hipoxantina/metabolismo , Malaria/fisiopatología , Plasmodium knowlesi/metabolismo , Animales , Antimaláricos/farmacología , Cloroquina/farmacología , Clindamicina/farmacología , Concentración 50 Inhibidora , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidad , Plasmodium knowlesi/efectos de los fármacos , Proguanil/farmacología , Triazinas/farmacología
10.
Org Biomol Chem ; 13(5): 1558-70, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25490858

RESUMEN

A series of amide (8­32, 40­45) and urea (33, 34, 36­39) analogues based on the thiaplakortone A natural product scaffold were synthesised and screened for in vitro antimalarial activity against chloroquine-sensitive (3D7) and chloroquine- and mefloquine-resistant (Dd2) Plasmodium falciparum parasite lines. Several analogues displayed potent inhibition of P. falciparum growth (IC50 <500 nM) and good selectivity for P. falciparum versus human neonatal foreskin fibroblast cells (selectivity index >100). Two of these compounds, 8 and 33, exhibited good aqueous solubility and metabolic stability, and when administered subcutaneously to mice (32 mg kg(-1)), plasma concentrations remained above 0.2 µM for at least 8 h. Both 8 and 33 were well tolerated in mice after subcutaneous administration of 32 mg kg(-1) twice daily for 4 days. Using this regimen blood stage P. berghei was suppressed by 52% for 8 and 26% for 33, relative to the vehicle control.


Asunto(s)
Amidas/química , Antimaláricos/química , Antimaláricos/farmacología , Productos Biológicos/química , Triazinas/química , Triazinas/farmacología , Urea/química , Animales , Antimaláricos/efectos adversos , Antimaláricos/farmacocinética , Atovacuona/farmacología , Línea Celular , Técnicas de Química Sintética , Resistencia a Medicamentos/efectos de los fármacos , Femenino , Humanos , Concentración 50 Inhibidora , Malaria/tratamiento farmacológico , Masculino , Ratones , Plasmodium berghei/efectos de los fármacos , Plasmodium berghei/fisiología , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Triazinas/efectos adversos , Triazinas/farmacocinética
11.
Bioorg Med Chem ; 23(3): 526-31, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25533402

RESUMEN

The η-carbonic anhydrases (CAs, EC 4.2.1.1) were recently discovered as the sixth genetic class of this metalloenzyme superfamily, and are so far known only in protozoa, including various Plasmodium species, the causative agents of malaria. We report here an inhibition study of the η-CA from Plasmodium falciparum (PfCA) against a panel of sulfonamides and one sulfamate compound, some of which are clinically used. The strongest inhibitors identified were ethoxzolamide and sulthiame, with KIs of 131-132 nM, followed by acetazolamide, methazolamide and hydrochlorothiazide (KIs of 153-198 nM). Brinzolamide, topiramate, zonisamide, indisulam, valdecoxib and celecoxib also showed significant inhibitory action against PfCA, with KIs ranging from 217 to 308 nM. An interesting observation was that the more efficient PfCA inhibitors are representative of several scaffolds and chemical classes, including benzene sulfonamides, monocyclic/bicyclic heterocyclic sulfonamides and compounds with a more complex scaffold (i.e., the sugar sulfamate derivative, topiramate, and the coxibs, celecoxib and valdecoxib). A comprehensive inhibition study of small molecules for η-CAs is needed as a first step towards assessing PfCA as a druggable target. The present work identifies the first known η-CA inhibitors and provides a platform for the development of next generation novel PfCA inhibitors.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/química , Anhidrasas Carbónicas/química , Plasmodium falciparum/enzimología , Sulfonamidas/farmacología , Antimaláricos/química , Antimaláricos/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/síntesis química
12.
J Nat Prod ; 78(6): 1422-7, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26056748

RESUMEN

Five new isocyano/isothiocyanato sesquiterpenes (1-5) with tri- or bicyclic carbon skeletons have been characterized from Australian specimens of the nudibranch Phyllidia ocellata. Spectroscopic analyses at 900 MHz were informed by DFT calculations. The 1S, 5S, 8R configuration of 2-isocyanoclovene (1) was determined by X-ray crystallographic analysis of formamide 6. A biosynthetic pathway to clovanes 1 and 2 from epicaryolane precursors is proposed. Isocyanides 1, 2, and 4 showed activity against Plasmodium falciparum (IC50 0.26-0.30 µM), while isothiocyanate 3 and formamide 6 had IC50 values of >10 µM.


Asunto(s)
Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Gastrópodos/química , Isocianatos/aislamiento & purificación , Isocianatos/farmacología , Isotiocianatos/aislamiento & purificación , Isotiocianatos/farmacología , Plasmodium falciparum/efectos de los fármacos , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacología , Animales , Antimaláricos/química , Australia , Cristalografía por Rayos X , Isocianatos/química , Isotiocianatos/química , Conformación Molecular , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Sesquiterpenos/química
13.
Mar Drugs ; 13(9): 5784-95, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26389920

RESUMEN

Six regioisomers associated with the tricyclic core of thiaplakortones A-D have been synthesized. Reaction of 1H-indole-4,7-dione and 1-tosyl-1H-indole-4,7-dione with 2-aminoethanesulfinic acid afforded a regioisomeric series, which was subsequently deprotected and oxidized to yield the tricyclic core scaffolds present in the thiaplakortones. All compounds were fully characterized using NMR and MS data. A single crystal X-ray structure was obtained on one of the N-tosyl derivatives. All compounds were screened for in vitro antiplasmodial activity against chloroquine-sensitive (3D7) and multidrug-resistant (Dd2) Plasmodium falciparum parasite lines. Several analogues displayed potent inhibition of P. falciparum growth (IC50 < 500 nM) but only moderate selectivity for P. falciparum versus human neonatal foreskin fibroblast cells.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Plasmodium falciparum/efectos de los fármacos , Triazinas/síntesis química , Triazinas/farmacología , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad
14.
Antimicrob Agents Chemother ; 58(7): 3666-78, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24733477

RESUMEN

Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology.


Asunto(s)
Acetilación/efectos de los fármacos , Antimaláricos/farmacología , Lisina/metabolismo , Plasmodium/efectos de los fármacos , Plasmodium/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Flagelos/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Plasmodium/crecimiento & desarrollo , Plasmodium berghei/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas
15.
Bioorg Med Chem Lett ; 24(18): 4389-4396, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25168745

RESUMEN

The genome of the protozoan parasite Plasmodium falciparum, the causative agent of the most lethal type of human malaria, contains a single gene annotated as encoding a carbonic anhydrase (CAs, EC 4.2.1.1) thought to belong to the α-class, PfCA. Here we demonstrate the kinetic properties of PfCA for the CO2 hydration reaction, as well as an inhibition study of this enzyme with inorganic and complex anions and other molecules known to interact with zinc proteins, including sulfamide, sulfamic acid, and phenylboronic/arsonic acids, detecting several low micromolar inhibitors. A closer examination of the sequence of this and the CAs from other Plasmodium spp., as well as a phylogenetic analysis, revealed that these protozoa encode for a yet undisclosed, new genetic family of CAs termed the η-CA class. The main features of the η-CAs are described in this report.


Asunto(s)
Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Descubrimiento de Drogas , Compuestos Organometálicos/farmacología , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Estructura Molecular , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Filogenia , Plasmodium falciparum/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Zinc/química
16.
Bioorg Med Chem Lett ; 23(21): 5915-8, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24035096

RESUMEN

An antimalarial medicinal plant Picrorhiza scrophulariiflora was chemically investigated as part of our ongoing research in traditional chinese medicines (TCM). Mass directed fractionation of the active part of the crude extract led to the isolation of ten main components, three new compounds (1-3) and seven known compounds (4-10). Compound 10 inhibited the growth of the Plasmodium falciparum 3D7 malarial parasite line, with an IC50 value of 8.3µM. This compound accounted for ∼95% of P. falciparum growth inhibitory activity in the crude extract confirming, for this TCM, that a single compound was responsible for the antimalarial activity.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Picrorhiza/química , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/aislamiento & purificación , Medicamentos Herbarios Chinos/aislamiento & purificación , Humanos , Malaria/tratamiento farmacológico , Plasmodium falciparum/crecimiento & desarrollo
17.
Bioorg Med Chem Lett ; 23(22): 6114-7, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24084158

RESUMEN

Despite the urgent need for effective antimalarial drugs with novel modes of action no new chemical class of antimalarial drug has been approved for use since 1996. To address this, we have used a rational approach to investigate compounds comprising the primary benzene sulfonamide fragment as a potential new antimalarial chemotype. We report the in vitro activity against Plasmodium falciparum drug sensitive (3D7) and resistant (Dd2) parasites for a panel of fourteen primary benzene sulfonamide compounds. Our findings provide a platform to support the further evaluation of primary benzene sulfonamides as a new antimalarial chemotype, including the identification of the target of these compounds in the parasite.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Derivados del Benceno/química , Derivados del Benceno/farmacología , Plasmodium falciparum/efectos de los fármacos , Sulfonamidas/química , Sulfonamidas/farmacología , Animales , Fibroblastos/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Relación Estructura-Actividad
18.
ACS Chem Biol ; 18(12): 2535-2543, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38050717

RESUMEN

Metabolic chemical probes are small-molecule reagents that utilize naturally occurring biosynthetic enzymes for in situ incorporation into biomolecules of interest. These reagents can be used to label, detect, and track important biological processes within living cells including protein synthesis, protein glycosylation, and nucleic acid proliferation. A limitation of current chemical probes, which have largely focused on mammalian cells, is that they often cannot be applied to other organisms due to metabolic differences. For example, the thymidine derivative 5-ethynyl-2'-deoxyuridine (EdU) is a gold standard metabolic chemical probe for assessing DNA proliferation in mammalian cells; however, it is unsuitable for the study of malaria parasites due to Plasmodium species lacking the thymidine kinase enzyme that is essential for metabolism of EdU. Herein, we report the design and synthesis of new thymidine-based probes that sidestep the requirement for a thymidine kinase enzyme in Plasmodium. Two of these DNADetect probes exhibit robust labeling of replicating asexual intraerythrocytic Plasmodium falciparum parasites, as determined by flow cytometry and fluorescence microscopy using copper-catalyzed azide-alkyne cycloaddition to a fluorescent azide. The DNADetect chemical probes are synthetically accessible and thus can be made widely available to researchers as tools to further understand the biology of different Plasmodium species, including laboratory lines and clinical isolates.


Asunto(s)
Malaria , Parásitos , Animales , Desoxiuridina/química , Desoxiuridina/metabolismo , Timidina Quinasa , Parásitos/metabolismo , Química Clic , Azidas/química , ADN/química , Timidina , Proliferación Celular , Mamíferos/metabolismo
19.
Antimicrob Agents Chemother ; 56(7): 3849-56, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22508312

RESUMEN

Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, the in vitro and in vivo antiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth of Plasmodium falciparum asexual-stage parasites in vitro (50% inhibitory concentration [IC(50)], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited the in vitro growth of exoerythrocytic-stage Plasmodium parasites in liver cells (IC(50), ~150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimental in vivo murine model of cerebral malaria, orally administered SB939 significantly inhibited P. berghei ANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria.


Asunto(s)
Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Malaria/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cerebro/parasitología , Ratones , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/patogenicidad
20.
Immunol Cell Biol ; 90(1): 66-77, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22124373

RESUMEN

Parasitic diseases cause significant global morbidity and mortality, particularly in underdeveloped regions of the world. Malaria alone causes ~800000 deaths each year, with children and pregnant women being at highest risk. There is no licensed vaccine available for any human parasitic disease and drug resistance is compromising the efficacy of many available anti-parasitic drugs. This is driving drug discovery research on new agents with novel modes of action. Histone deacetylase (HDAC) inhibitors are being investigated as drugs for a range of diseases, including cancers and infectious diseases such as HIV/AIDS, and several parasitic diseases. This review focuses on the current state of knowledge of HDAC inhibitors targeted to the major human parasitic diseases malaria, schistosomiasis, trypanosomiasis, toxoplasmosis and leishmaniasis. Insights are provided into the unique challenges that will need to be considered if HDAC inhibitors are to be progressed towards clinical development as potential new anti-parasitic drugs.


Asunto(s)
Inhibidores de Histona Desacetilasas/uso terapéutico , Leishmaniasis/tratamiento farmacológico , Malaria/tratamiento farmacológico , Esquistosomiasis/tratamiento farmacológico , Toxoplasmosis/tratamiento farmacológico , Tripanosomiasis/tratamiento farmacológico , Animales , Niño , Femenino , Humanos , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA