Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 452(7185): 370-4, 2008 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-18354483

RESUMEN

The RE1-silencing transcription factor (REST, also known as NRSF) is a master repressor of neuronal gene expression and neuronal programmes in non-neuronal lineages. Recently, REST was identified as a human tumour suppressor in epithelial tissues, suggesting that its regulation may have important physiological and pathological consequences. However, the pathways controlling REST have yet to be elucidated. Here we show that REST is regulated by ubiquitin-mediated proteolysis, and use an RNA interference (RNAi) screen to identify a Skp1-Cul1-F-box protein complex containing the F-box protein beta-TRCP (SCF(beta-TRCP)) as an E3 ubiquitin ligase responsible for REST degradation. beta-TRCP binds and ubiquitinates REST and controls its stability through a conserved phospho-degron. During neural differentiation, REST is degraded in a beta-TRCP-dependent manner. beta-TRCP is required for proper neural differentiation only in the presence of REST, indicating that beta-TRCP facilitates this process through degradation of REST. Conversely, failure to degrade REST attenuates differentiation. Furthermore, we find that beta-TRCP overexpression, which is common in human epithelial cancers, causes oncogenic transformation of human mammary epithelial cells and that this pathogenic function requires REST degradation. Thus, REST is a key target in beta-TRCP-driven transformation and the beta-TRCP-REST axis is a new regulatory pathway controlling neurogenesis.


Asunto(s)
Diferenciación Celular , Transformación Celular Neoplásica , Neuronas/citología , Neuronas/patología , Proteínas Represoras/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Línea Celular Tumoral , Secuencia Conservada , Humanos , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Proteínas Represoras/genética , Especificidad por Sustrato , Factores de Transcripción/genética , Ubiquitina/metabolismo , Proteínas con Repetición de beta-Transducina/genética
2.
Nature ; 446(7138): 876-81, 2007 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-17443180

RESUMEN

The spindle checkpoint prevents chromosome mis-segregation by delaying sister chromatid separation until all chromosomes have achieved bipolar attachment to the mitotic spindle. Its operation is essential for accurate chromosome segregation, whereas its dysregulation can contribute to birth defects and tumorigenesis. The target of the spindle checkpoint is the anaphase-promoting complex (APC), a ubiquitin ligase that promotes sister chromatid separation and progression to anaphase. Using a short hairpin RNA screen targeting components of the ubiquitin-proteasome pathway in human cells, we identified the deubiquitinating enzyme USP44 (ubiquitin-specific protease 44) as a critical regulator of the spindle checkpoint. USP44 is not required for the initial recognition of unattached kinetochores and the subsequent recruitment of checkpoint components. Instead, it prevents the premature activation of the APC by stabilizing the APC-inhibitory Mad2-Cdc20 complex. USP44 deubiquitinates the APC coactivator Cdc20 both in vitro and in vivo, and thereby directly counteracts the APC-driven disassembly of Mad2-Cdc20 complexes (discussed in an accompanying paper). Our findings suggest that a dynamic balance of ubiquitination by the APC and deubiquitination by USP44 contributes to the generation of the switch-like transition controlling anaphase entry, analogous to the way that phosphorylation and dephosphorylation of Cdk1 by Wee1 and Cdc25 controls entry into mitosis.


Asunto(s)
Anafase/fisiología , Endopeptidasas/metabolismo , Ubiquitina/metabolismo , Anafase/efectos de los fármacos , Ciclosoma-Complejo Promotor de la Anafase , Proteínas de Unión al Calcio/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/metabolismo , Endopeptidasas/deficiencia , Endopeptidasas/genética , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Proteínas Mad2 , Paclitaxel/farmacología , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteasas Ubiquitina-Específicas
3.
Oncogene ; 24(17): 2860-70, 2005 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-15838520

RESUMEN

The regulatory step in ubiquitin (Ub)-mediated protein degradation involves recognition and selection of the target substrate by an E3 Ub-ligase. E3 Ub-ligases evoke sophisticated mechanisms to regulate their activity temporally and spatially, including multiple post-translational modifications, combinatorial E3 Ub-ligase pathways, and subcellular localization. The phosphodegrons of many substrates incorporate the activities of multiple kinases, and ubiquitination only occurs when all necessary phosphorylation signals have been incorporated. In this manner, the precise timing of degradation can be controlled. Another way that the Ub pathway tightly controls the timing of proteolysis is with multiple E3 Ub-ligases acting upon a single target. Lastly, subcellular localization can either promote or prevent degradation by regulating the accessibility of kinases and E3 Ub-ligases. This review highlights recent findings that exemplify these emerging themes in the regulation of E3 Ub-ligase substrate recognition.


Asunto(s)
Ciclo Celular/fisiología , Proteínas/metabolismo , Factor de Células Madre/fisiología , Animales , Proteínas de Ciclo Celular/fisiología , Humanos , Hidrólisis , Oncogenes , Fosforilación
5.
Methods Enzymol ; 399: 287-309, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16338364

RESUMEN

F-box proteins serve as specificity factors for a family of ubiquitin protein ligases composed of Skp1, Cu11, and Rbx1. In SCF complexes, Cu11 serves as a scaffold for assembly of the catalytic components composed of Rbx1 and a ubiquitin-conjugating enzyme and the specificity module composed of Skp1 and an F-box protein. F-box proteins interact with Skp1 through the F-box motif and with ubiquitination substrates through C-terminal protein interaction domains such as WD40 repeats. The human genome contains approximately 68 F-box proteins, which fall into three major classes: Fbws containing WD40 repeats, Fbls containing leucine-rich repeats, and Fbxs containing other types of domains. Most often, F-box proteins interact with their targets in a phosphorylation-dependent manner. The interaction of F-box proteins with substrates typically involves a phosphodegron, a small peptide motif containing specific phosphorylation events whose sequence is complementary to the F-box protein. The identification of substrates of F-box proteins is frequently a challenge because of the relatively weak affinity of substrates for the requisite F-box protein. Here we describe approaches for the identification of substrates of F-box proteins. Approaches include stabilization of ubiquitination targets by Cu11-dominant negatives, the use of shRNA hairpins to disrupt F-box protein expression, and the use of collections of F-box proteins as biochemical reagents to identify interacting proteins that may be substrates. In addition, we describe approaches for the use of immobilized phosphopeptides to identify F-box proteins that recognize particular phosphodegrons.


Asunto(s)
Ubiquitina-Proteína Ligasas/metabolismo , Animales , Catálisis , Línea Celular , Humanos , Hidrólisis , Interferencia de ARN , Spodoptera , Especificidad por Sustrato
6.
Sci STKE ; 2004(242): pe31, 2004 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-15266102

RESUMEN

Ubiquitin-mediated proteolysis has emerged as a paramount mechanism for regulating the cell division cycle. Changes in the activities of certain E3 ligases can promote the interconversion of cell cycle states or transitions. Recent studies have revealed how distinct E3 ligases control the activity of other E3 ligases and how the interplay between these degradation machines sets up the timing of cell cycle transitions. For example, during G1, the anaphase-promoting complex in conjunction with Cdh1 (APC(Cdh1)) catalyzes destruction of the S-phase activator Skp2, helping to define the G1 state. In response to poorly defined signals, APC(Cdh1) activity is reduced, allowing accumulation of Skp2 and therefore entry into S phase. In many cases, E3 ligases also function to ubiquitinate proteins that negatively regulate cell cycle transitions. Recent work indicates that cyclin-dependent kinase 2 and Polo kinase collaborate to phosphorylate Wee1, thereby promoting its ubiquitination by SCF(beta-TRCP). Thus, activation of the mitotic transition produces feedback signals that help to turn off the negative upstream pathway to further reenforce the transition.


Asunto(s)
Ciclo Celular/fisiología , Ubiquitinas/fisiología , Animales , Retroalimentación Fisiológica/fisiología , Humanos
7.
Cancer Cell ; 18(2): 147-59, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20708156

RESUMEN

Mdm2 is the major negative regulator of the p53 pathway. Here, we report that Mdm2 is rapidly degraded after DNA damage and that phosphorylation of Mdm2 by casein kinase I (CKI) at multiple sites triggers its interaction with, and subsequent ubiquitination and destruction, by SCF(beta-TRCP). Inactivation of either beta-TRCP or CKI results in accumulation of Mdm2 and decreased p53 activity, and resistance to apoptosis induced by DNA damaging agents. Moreover, SCF(beta-TRCP)-dependent Mdm2 turnover also contributes to the control of repeated p53 pulses in response to persistent DNA damage. Our results provide insight into the signaling pathways controlling Mdm2 destruction and further suggest that compromised regulation of Mdm2 results in attenuated p53 activity, thereby facilitating tumor progression.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Daño del ADN , Femenino , Humanos , Ratones , Ratones Desnudos , Fosforilación , ARN Interferente Pequeño , Proteínas con Repetición de beta-Transducina/genética
8.
J Biol Chem ; 283(43): 29424-32, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18723513

RESUMEN

The ubiquitin-proteasome pathway (UPP) regulates synaptic function, but little is known about specific UPP targets and mechanisms in mammalian synapses. We report here that the SCF(beta-TRCP) complex, a multisubunit E3 ubiquitin ligase, targets the postsynaptic spine-associated Rap GTPase activating protein (SPAR) for degradation in neurons. SPAR degradation by SCF(beta-TRCP) depended on the activity-inducible protein kinase Polo-like kinase 2 (Plk2). In the presence of Plk2, SPAR physically associated with the SCF(beta-TRCP) complex through a canonical phosphodegron. In hippocampal neurons, disruption of the SCF(beta-TRCP) complex by overexpression of dominant interfering beta-TRCP or Cul1 constructs prevented Plk2-dependent degradation of SPAR. Our results identify a specific E3 ubiquitin ligase that mediates degradation of a key postsynaptic regulator of synaptic morphology and function.


Asunto(s)
Proteínas Activadoras de GTPasa/biosíntesis , Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Factor de Células Madre/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Proteínas Activadoras de GTPasa/fisiología , Hipocampo/metabolismo , Humanos , Modelos Biológicos , Neuronas/metabolismo , Plásmidos/metabolismo , Ratas , Ratas Long-Evans , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Biol Chem ; 283(28): 19322-8, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18480045

RESUMEN

In response to DNA damage, cells activate a signaling pathway that promotes cell cycle arrest and degradation of the cell cycle regulator Cdc25A. Cdc25A degradation occurs via the SCFbeta-TRCP pathway and phosphorylation of Ser-76. Previous work indicates that the checkpoint kinase Checkpoint kinase 1 (Chk1) is capable of phosphorylating Ser-76 in Cdc25A, thereby promoting its degradation. In contrast, other experiments involving overexpression of dominant Chk2 mutant proteins point to a role for Chk2 in Cdc25A degradation. However, loss-of-function studies that implicate Chk2 in Cdc25A turnover are lacking, and there is no evidence that Chk2 is capable of phosphorylating Ser-76 in Cdc25A despite the finding that Chk1 and Chk2 sometimes share overlapping primary specificity. We find that although Chk2 can phosphorylate many of the same sites in Cdc25A that Chk1 phosphorylates, albeit with reduced efficiency, Chk2 is unable to efficiently phosphorylate Ser-76. Consistent with this, Chk2, unlike Chk1, is unable to support SCFbeta-TRCP-mediated ubiquitination of Cdc25A in vitro. In CHK2(-/-) HCT116 cells, the kinetics of Cdc25A degradation in response to ionizing radiation is comparable with that seen in HCT116 cells containing Chk2, indicating that Chk2 is not generally required for timely DNA damage-dependent Cdc25A turnover. In contrast, depletion of Chk1 by RNA interference in CHK2(-/-) cells leads to Cdc25A stabilization in response to ionizing radiation. These data support the idea that Chk1 is the primary signal transducer linking activation of the ATM/ATR kinases to Cdc25A destruction in response to ionizing radiation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Radiación Ionizante , Proteínas Supresoras de Tumor/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Eliminación de Gen , Humanos , Fosforilación/efectos de la radiación , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Proteínas Supresoras de Tumor/genética , Proteínas con Repetición de beta-Transducina/genética , Proteínas con Repetición de beta-Transducina/metabolismo , Fosfatasas cdc25/genética
10.
Science ; 319(5863): 620-4, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18239126

RESUMEN

Retroviral short hairpin RNA (shRNA)-mediated genetic screens in mammalian cells are powerful tools for discovering loss-of-function phenotypes. We describe a highly parallel multiplex methodology for screening large pools of shRNAs using half-hairpin barcodes for microarray deconvolution. We carried out dropout screens for shRNAs that affect cell proliferation and viability in cancer cells and normal cells. We identified many shRNAs to be antiproliferative that target core cellular processes, such as the cell cycle and protein translation, in all cells examined. Moreover, we identified genes that are selectively required for proliferation and survival in different cell lines. Our platform enables rapid and cost-effective genome-wide screens to identify cancer proliferation and survival genes for target discovery. Such efforts are complementary to the Cancer Genome Atlas and provide an alternative functional view of cancer cells.


Asunto(s)
Neoplasias de la Mama/genética , Proliferación Celular , Neoplasias del Colon/genética , Genes Relacionados con las Neoplasias , Genómica/métodos , Neoplasias de la Mama/patología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/genética , Neoplasias del Colon/patología , Biblioteca de Genes , Vectores Genéticos , Genoma Humano , Humanos , MicroARNs , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Interferente Pequeño , Retroviridae/genética
11.
J Biol Chem ; 280(29): 26863-72, 2005 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-15917222

RESUMEN

Circadian rhythms are controlled by the periodic accumulation of Period proteins, which act as transcriptional repressors of Clock-dependent genes. Period genes are themselves Clock targets, thereby establishing a negative transcriptional feedback circuit controlling circadian periodicity. Previous data have implicated the CK1epsilon isolog Doubletime (Dbt) and the F-box protein Slimb in the regulation of Drosophila Period (Per) through an unknown mechanism. In this work, we have identified components of the machinery involved in regulating the abundance of human Per1 in tissue culture cells. CK1epsilon and CK1gamma2 were found to bind to Per1 and to promote its degradation in an in vivo degradation assay. Per1 turnover was blocked by a dominant negative version of the Cul1 protein, a component of the SCF (Skp1-Cul1-F-box protein) ubiquitin ligase. We screened a panel of F-box proteins for those that would associate with Per1 in a CK1epsilon-dependent manner, and we identified beta-TRCP1 and beta-TRCP2, isologs of the Drosophila Slimb protein. RNA interference against beta-transducin repeat-containing protein (beta-TRCP) stabilizes endogenous and exogenous Per1. beta-TRCP associates with sequences near the N terminus of Per1 in a region distinct from the previously characterized CK1epsilon-binding site. beta-TRCP and CK1epsilon promote Per1 ubiquitination in vitro. Finally, RNA interference against beta-TRCP greatly decreases Clock-dependent gene expression in tissue culture cells, indicating that beta-TRCP controls endogenous Per1 activity and the circadian clock by directly targeting Per1 for degradation.


Asunto(s)
Proteínas Nucleares/metabolismo , Proteínas Ligasas SKP Cullina F-box/fisiología , Transactivadores/fisiología , Transcripción Genética , Proteínas con Repetición de beta-Transducina/fisiología , Sitios de Unión , Proteínas CLOCK , Proteínas de Ciclo Celular , Línea Celular , Ritmo Circadiano , Humanos , Proteínas Circadianas Period , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA