Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(17): 5254-5268, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35703577

RESUMEN

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.


Asunto(s)
Bosques , Árboles , Biomasa , Carbono/metabolismo , Ciclo del Carbono , Ecosistema , Árboles/fisiología
2.
Plant Cell Environ ; 44(4): 1059-1071, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33522615

RESUMEN

The phenomenon that organisms can distinguish genetically related individuals from strangers (i.e., kin recognition) and exhibit more cooperative behaviours towards their relatives (i.e., positive kin discrimination) has been documented in a wide variety of organisms. However, its occurrence in plants has been considered only recently. Despite the concerns about some methodologies used to document kin recognition, there is sufficient evidence to state that it exists in plants. Effects of kin recognition go well beyond reducing resource competition between related plants and involve interactions with symbionts (e.g., mycorrhizal networks). Kin recognition thus likely has important implications for evolution of plant traits, diversity of plant populations, ecological networks and community structures. Moreover, as kin selection may result in less competitive traits and thus greater population performance, it holds potential promise for crop breeding. Exploration of these evo-ecological and agricultural implications requires adequate control and measurements of relatedness, sufficient replication at genotypic level and comprehensive measurements of performance/fitness effects of kin discrimination. The primary questions that need to be answered are: when, where and by how much positive kin discrimination improves population performance.


Asunto(s)
Producción de Cultivos , Ecología , Plantas/metabolismo , Comunicación , Fenómenos Fisiológicos de las Plantas , Raíces de Plantas/fisiología
3.
Plant Cell Environ ; 44(1): 102-113, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32490539

RESUMEN

In vegetation stands, plants receive red to far-red ratio (R:FR) signals of varying strength from all directions. However, plant responses to variations in R:FR reflected from below have been largely ignored despite their potential consequences for plant performance. Using a heterogeneous rose canopy, which consists of bent shoots down in the canopy and vertically growing upright shoots, we quantified upward far-red reflection by bent shoots and its consequences for upright shoot architecture. With a three-dimensional plant model, we assessed consequences of responses to R:FR from below for plant photosynthesis. Bent shoots reflected substantially more far-red than red light, causing reduced R:FR in light reflected upwards. Leaf inclination angles increased in upright shoots which received low R:FR reflected from below. The increased leaf angle led to an increase in simulated plant photosynthesis only when this low R:FR was reflected off their own bent shoots and not when it reflected off neighbour bent shoots. We conclude that plant response to R:FR from below is an under-explored phenomenon which may have contrasting consequences for plant performance depending on the type of vegetation or crop system. The responses are beneficial for performance only when R:FR is reflected by lower foliage of the same plants.


Asunto(s)
Luz , Desarrollo de la Planta/efectos de la radiación , Plantas/efectos de la radiación , Modelos Biológicos , Fotosíntesis/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Rosa/crecimiento & desarrollo , Rosa/efectos de la radiación
4.
PLoS Comput Biol ; 15(8): e1007253, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31433817

RESUMEN

Phenotypic plasticity is a vital strategy for plants to deal with changing conditions by inducing phenotypes favourable in different environments. Understanding how natural selection acts on variation in phenotypic plasticity in plants is therefore a central question in ecology, but is often ignored in modelling studies. Here we present a new modelling approach that allows for the analysis of selection for variation in phenotypic plasticity as a response strategy. We assess selection for shade avoidance strategies of Arabidopsis thaliana in response to future neighbour shading signalled through a decrease in red:far-red (R:FR) ratio. For this, we used a spatially explicit 3D virtual plant model that simulates individual Arabidopsis plants competing for light in different planting densities. Plant structure and growth were determined by the organ-specific interactions with the light environment created by the vegetation structure itself. Shade avoidance plastic responses were defined by a plastic response curve relating petiole elongation and lamina growth to R:FR perceived locally. Different plasticity strategies were represented by different shapes of the response curve that expressed different levels of R:FR sensitivity. Our analyses show that the shape of the selected shade avoidance strategy varies with planting density. At higher planting densities, more sensitive response curves are selected for than at lower densities. In addition, the balance between lamina and petiole responses influences the sensitivity of the response curves selected for. Combining computational virtual plant modelling with a game theoretical analysis represents a new step towards analysing how natural selection could have acted upon variation in shade avoidance as a response strategy, which can be linked to genetic variation and underlying physiological processes.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Modelos Biológicos , Plantas/efectos de la radiación , Adaptación Fisiológica/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/efectos de la radiación , Evolución Biológica , Biomasa , Biología Computacional , Simulación por Computador , Teoría del Juego , Luz , Desarrollo de la Planta/genética , Desarrollo de la Planta/efectos de la radiación , Plantas/genética , Selección Genética , Interfaz Usuario-Computador
5.
Ann Bot ; 126(4): 587-599, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31549140

RESUMEN

BACKGROUND AND AIMS: The success of using bent shoots in cut-rose (Rosa hybrida) production to improve flower shoot quality has been attributed to bent shoots capturing more light and thus providing more assimilates for flower shoot growth. We aimed at quantifying this contribution of photosynthesis by bent shoots to flower shoot growth. METHODS: Rose plants were grown with four upright flower shoots and with no, one or three bent shoots per plant. Plant architectural traits, leaf photosynthetic parameters and organ dry weight were measured. A functional-structural plant (FSP) model of rose was used to calculate photosynthesis of upright shoots and bent shoots separately, taking into account the heterogeneous canopy structure of these plants. KEY RESULTS: Bent shoots contributed to 43-53 % of total assimilated CO2 by the plant. Plant photosynthesis increased by 73 and 117 % in plants with, respectively, one and three bent shoots compared with plants without bent shoots. Upright shoot photosynthesis was not significantly affected by the presence of bent shoots. However, upright shoot dry weight increased by 35 and 59 % in plants with, respectively, one and three bent shoots compared with plants without bent shoots. The increased upright shoot dry weight was entirely due to the contribution of extra photosynthesis by bent shoots, as this was the only source that could induce differences in upright shoot growth apart from their own photosynthesis. At least 47-51 % of the photosynthesis by bent shoots was translocated to upright shoots to support their biomass increase. CONCLUSIONS: Based on model simulations, we conclude that the positive effect of shoot bending on flower shoot growth and quality in cut-rose production system can almost entirely be attributed to assimilate supply from bent shoots. FSP modelling is a useful tool to quantify the contributions of photosynthesis by different parts of heterogeneous canopies.


Asunto(s)
Fotosíntesis , Rosa , Biomasa , Flores , Hojas de la Planta , Brotes de la Planta
6.
Ann Bot ; 126(4): 635-646, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-31793625

RESUMEN

BACKGROUND AND AIMS: Shading by an overhead canopy (i.e. canopy shading) entails simultaneous changes in both photosynthetically active radiation (PAR) and red to far-red ratio (R:FR). As plant responses to PAR (e.g. changes in leaf photosynthesis) are different from responses to R:FR (e.g. changes in plant architecture), and these responses occur at both organ and plant levels, understanding plant photosynthesis responses to canopy shading needs separate analysis of responses to reductions in PAR and R:FR at different levels. METHODS: In a glasshouse experiment we subjected plants of woody perennial rose (Rosa hybrida) to different light treatments, and so separately quantified the effects of reductions in PAR and R:FR on leaf photosynthetic traits and plant architectural traits. Using a functional-structural plant model, we separately quantified the effects of responses in these traits on plant photosynthesis, and evaluated the relative importance of changes of individual traits for plant photosynthesis under mild and heavy shading caused by virtual overhead canopies. KEY RESULTS: Model simulations showed that the individual trait responses to canopy shading could have positive and negative effects on plant photosynthesis. Under mild canopy shading, trait responses to reduced R:FR on photosynthesis were generally negative and with a larger magnitude than effects of responses to reduced PAR. Conversely, under heavy canopy shading, the positive effects of trait responses to reduced PAR became dominant. The combined effects of low-R:FR responses and low-PAR responses on plant photosynthesis were not equal to the sum of the separate effects, indicating interactions between individual trait responses. CONCLUSIONS: Our simulation results indicate that under canopy shading, the relative importance of plant responses to PAR and R:FR for plant photosynthesis changes with shade levels. This suggests that the adaptive significance of plant plasticity responses to one shading factor depends on plant responses to the other.


Asunto(s)
Fotosíntesis , Rosa , Luz , Hojas de la Planta
7.
Proc Natl Acad Sci U S A ; 114(28): 7450-7455, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28652357

RESUMEN

Vegetation stands have a heterogeneous distribution of light quality, including the red/far-red light ratio (R/FR) that informs plants about proximity of neighbors. Adequate responses to changes in R/FR are important for competitive success. How the detection and response to R/FR are spatially linked and how this spatial coordination between detection and response affects plant performance remains unresolved. We show in Arabidopsis thaliana and Brassica nigra that localized FR enrichment at the lamina tip induces upward leaf movement (hyponasty) from the petiole base. Using a combination of organ-level transcriptome analysis, molecular reporters, and physiology, we show that PIF-dependent spatial auxin dynamics are key to this remote response to localized FR enrichment. Using computational 3D modeling, we show that remote signaling of R/FR for hyponasty has an adaptive advantage over local signaling in the petiole, because it optimizes the timing of leaf movement in response to neighbors and prevents hyponasty caused by self-shading.


Asunto(s)
Arabidopsis/fisiología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/fisiología , Proteínas de Arabidopsis/metabolismo , Simulación por Computador , Genes de Plantas , Genotipo , Hipocótilo/fisiología , Imagenología Tridimensional , Luz , Mutación , Fitocromo , Plantones/fisiología , Transducción de Señal , Transcriptoma
8.
Plant Cell Environ ; 42(3): 1065-1077, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30702750

RESUMEN

Plants balance the allocation of resources between growth and defence to optimize fitness in a competitive environment. Perception of neighbour-detection cues, such as a low ratio of red to far-red (R:FR) radiation, activates a suite of shade-avoidance responses that include stem elongation and upward leaf movement, whilst simultaneously downregulating defence. This downregulation is hypothesized to benefit the plant either by mediating the growth-defence balance in favour of growth in high plant densities or, alternatively, by mediating defence of individual leaves such that those most photosynthetically productive are best protected. To test these hypotheses, we used a 3D functional-structural plant model of Brassica nigra that mechanistically simulates the interactions between plant architecture, herbivory, and the light environment. Our results show that plant-level defence expression is a strong determinant of plant fitness and that leaf-level defence mediation by R:FR can provide a fitness benefit in high densities. However, optimal plant-level defence expression does not decrease monotonically with plant density, indicating that R:FR mediation of defence alone is not enough to optimize defence between densities. Therefore, assessing the ecological significance of R:FR-mediated defence is paramount to better understand the evolution of this physiological linkage and its implications for crop breeding.


Asunto(s)
Luz , Planta de la Mostaza/fisiología , Fenómenos Fisiológicos de las Plantas/efectos de la radiación , Simulación por Computador , Ecología , Herbivoria , Planta de la Mostaza/crecimiento & desarrollo , Planta de la Mostaza/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
9.
J Exp Bot ; 70(9): 2381-2388, 2019 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-30165416

RESUMEN

Plant species mixtures improve productivity over monocultures by exploiting species complementarities for resource capture in time and space. Complementarity results in part from competition avoidance responses that maximize resource capture and growth of individual plants. Individual organs accommodate to local resource levels, e.g. with regard to nitrogen content and photosynthetic capacity or by size (e.g. shade avoidance). As a result, the resource acquisition in time and space is improved and performance of the community as a whole is increased. Modelling is needed to unravel the primary drivers and subsequent dynamics of complementary growth responses in mixtures. Here, we advocate using functional-structural plant (FSP) modelling to analyse the functioning of plant mixtures. In FSP modelling, crop performance is a result of the behaviour of the individual plants interacting through competitive and complementary resource acquisition. FSP models can integrate the interactions between structural and physiological plant responses to the local resource availability and strength of competition, which drive resource capture and growth of individuals in species mixtures. FSP models have the potential to accelerate mixed-species plant research, and thus support the development of knowledge that is needed to promote the use of mixtures towards sustainably increasing crop yields at acceptable input levels.


Asunto(s)
Luz , Plantas/metabolismo , Ecosistema , Modelos Teóricos , Fenotipo
10.
Ann Bot ; 121(5): 863-873, 2018 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-29280992

RESUMEN

Background and Aims: Although phenotypic plasticity has been shown to be beneficial for plant competitiveness for light, there is limited knowledge on how variation in these plastic responses plays a role in determining competitiveness. Methods: A combination of detailed plant experiments and functional-structural plant (FSP) modelling was used that captures the complex dynamic feedback between the changing plant phenotype and the within-canopy light environment in time and 3-D space. Leaf angle increase (hyponasty) and changes in petiole elongation rates in response to changes in the ratio between red and far-red light, two important shade avoidance responses in Arabidopsis thaliana growing in dense population stands, were chosen as a case study for plant plasticity. Measuring and implementing these responses into an FSP model allowed simulation of plant phenotype as an emergent property of the underlying growth and response mechanisms. Key Results: Both the experimental and model results showed that substantial differences in competitiveness may arise between genotypes with only marginally different hyponasty or petiole elongation responses, due to the amplification of plant growth differences by small changes in plant phenotype. In addition, this study illustrated that strong competitive responses do not necessarily have to result in a tragedy of the commons; success in competition at the expense of community performance. Conclusions: Together, these findings indicate that selection pressure could probably have played a role in fine-tuning the sensitive shade avoidance responses found in plants. The model approach presented here provides a novel tool to analyse further how natural selection could have acted on the evolution of plastic responses.


Asunto(s)
Adaptación Fisiológica/efectos de la radiación , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Genotipo , Luz , Fenotipo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
11.
J Plant Res ; 131(4): 611-621, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29850925

RESUMEN

Wood density (WD) is believed to be a key trait in driving growth strategies of tropical forest species, and as it entails the amount of mass per volume of wood, it also tends to correlate with forest carbon stocks. Yet there is relatively little information on how interspecific variation in WD correlates with biomass dynamics at the species and population level. We determined changes in biomass in permanent plots in a logged forest in Vietnam from 2004 to 2012, a period representing the last 8 years of a 30 years logging cycle. We measured diameter at breast height (DBH) and estimated aboveground biomass (AGB) growth, mortality, and net AGB increment (the difference between AGB gains and losses through growth and mortality) per species at the individual and population (i.e. corrected for species abundance) level, and correlated these with WD. At the population level, mean net AGB increment rates were 6.47 Mg ha-1 year-1 resulting from a mean AGB growth of 8.30 Mg ha-1 year-1, AGB recruitment of 0.67 Mg ha-1 year-1 and AGB losses through mortality of 2.50 Mg ha-1 year-1. Across species there was a negative relationship between WD and mortality rate, WD and DBH growth rate, and a positive relationship between WD and tree standing biomass. Standing biomass in turn was positively related to AGB growth, and net AGB increment both at the individual and population level. Our findings support the view that high wood density species contribute more to total biomass and indirectly to biomass increment than low wood density species in tropical forests. Maintaining high wood density species thus has potential to increase biomass recovery and carbon sequestration after logging.


Asunto(s)
Biomasa , Agricultura Forestal , Bosques , Madera , Carbono/metabolismo , Agricultura Forestal/estadística & datos numéricos , Modelos Estadísticos , Árboles/anatomía & histología , Clima Tropical , Vietnam
12.
New Phytol ; 216(3): 782-797, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28892162

RESUMEN

Plants can prepare for future herbivore attack through a process called priming. Primed plants respond more strongly and/or faster to insect attack succeeding the priming event than nonprimed plants, while the energetic costs of priming are relatively low. To better understand the evolution of priming, we developed a simulation model, partly parameterized for Brassica nigra plants, to explore how the fitness benefits of priming change when plants are grown in different biotic environments. Model simulations showed that herbivore dynamics (arrival probability, arrival time, and feeding rate) affect the optimal duration, the optimal investment and the fitness benefits of priming. Competition for light increases the indirect costs of priming, but may also result in a larger payoff when the nonprimed plant experiences substantial leaf losses. This modeling approach identified some important knowledge gaps: herbivore arrival rates on individual plants are rarely reported but they shape the optimal duration of priming, and it would pay off if the likelihood, severity and timing of the attack could be discerned from the priming cue, but it is unknown if plants can do so. In addition, the model generated some testable predictions, for example that the sensitivity to the priming cue decreases with plant age.


Asunto(s)
Herbivoria , Modelos Biológicos , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Animales , Insectos , Semillas/crecimiento & desarrollo
13.
Glob Chang Biol ; 23(5): 1761-1762, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27865028

RESUMEN

In a recent Opinion article, Brienen et al. (2016) raise doubts about our finding that tropical tree growth has not increased during 150 years of CO2 rise (Groenendijk et al., 2015; van der Sleen et al., 2015). They claim that our tree-ring data contain evidence for historical growth stimulation that was concealed due to failing regeneration in several species. Here we show that (i) the correction method proposed by Brienen et al. induces a bias towards finding positive growth trends, (ii) the results of Brienen et al. rest on selective removal of species, (iii) there is a simple and effective way to accommodate effects of recruitment failure by subsetting data, and (iv) the application of this method confirms our earlier findings. Thus, our results are robust to effects of recruitment failure and our conclusions remain unchanged: we find no evidence for historical growth changes in our studied tree species.


Asunto(s)
Árboles/crecimiento & desarrollo , Clima Tropical
14.
Oecologia ; 185(4): 663-674, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29027003

RESUMEN

An unanswered question in ecology is whether the environmental factors driving short-term performance also determine the often observed long-term performance differences among individuals. Here, we analyze the extent to which temporal persistence of spatial heterogeneity in environmental factors can contribute to long-term inter-individual variation in stem length growth. For a natural population of a long-lived understorey palm, we first quantified the effect of several environmental factors on stem length growth and survival. We then performed individual-based simulations of growth trajectories, in which we varied, for two environmental factors: (1) the strength of the effect on stem length growth and (2) the temporal persistence. Short-term variation in stem length growth was strongly driven by light availability. Auto-correlation in light availability and soil pH increased simulated variation in stem length growth among 20-year-old palms to levels similar to the observed variation. Analyses in which we varied both the strength of the effect on stem length growth and the temporal persistence of the environmental factors revealed that a large fraction of observed long-term growth differences can be explained, as long as one of these effects is strong. This implies that environmental factors that are relatively unimportant for short-term performance can still drive long-term performance differences when the environmental variation is sufficiently persistent over time.


Asunto(s)
Arecaceae/crecimiento & desarrollo , Arecaceae/fisiología , Ecosistema , Suelo , Factores de Tiempo
17.
Ann Bot ; 117(7): 1197-207, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27192707

RESUMEN

BACKGROUND AND AIMS: The rising atmospheric CO2 concentration ([CO2]) is a ubiquitous selective force that may strongly impact species distribution and vegetation functioning. Plant-plant interactions could mediate the trajectory of vegetation responses to elevated [CO2], because some plants may benefit more from [CO2] elevation than others. The relative contribution of plastic (within the plant's lifetime) and genotypic (over several generations) responses to elevated [CO2] on plant performance was investigated and how these patterns are modified by plant-plant interactions was analysed. METHODS: Plantago asiatica seeds originating from natural CO2 springs and from ambient [CO2] sites were grown in mono stands of each one of the two origins as well as mixtures of both origins. In total, 1944 plants were grown in [CO2]-controlled walk-in climate rooms, under a [CO2] of 270, 450 and 750 ppm. A model was used for upscaling from leaf to whole-plant photosynthesis and for quantifying the influence of plastic and genotypic responses. KEY RESULTS: It was shown that changes in canopy photosynthesis, specific leaf area (SLA) and stomatal conductance in response to changes in growth [CO2] were mainly determined by plastic and not by genotypic responses. We further found that plants originating from high [CO2] habitats performed better in terms of whole-plant photosynthesis, biomass and leaf area, than those from ambient [CO2] habitats at elevated [CO2] only when both genotypes competed. Similarly, plants from ambient [CO2] habitats performed better at low [CO2], also only when both genotypes competed. No difference in performance was found in mono stands. CONCLUSION: The results indicate that natural selection under increasing [CO2] will be mainly driven by competitive interactions. This supports the notion that plant-plant interactions have an important influence on future vegetation functioning and species distribution. Furthermore, plant performance was mainly driven by plastic and not by genotypic responses to changes in atmospheric [CO2].


Asunto(s)
Dióxido de Carbono/metabolismo , Plantago/fisiología , Genotipo , Japón , Modelos Biológicos , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Plantago/genética , Plantago/crecimiento & desarrollo
18.
Ann Bot ; 118(2): 239-47, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27296134

RESUMEN

BACKGROUND AND AIMS: Leaf nitrogen distribution in the plant canopy is an important determinant for canopy photosynthesis. Although the gradient of leaf nitrogen is formed along light gradients in the canopy, its quantitative variations among species and environmental responses remain unknown. Here, we conducted a global meta-analysis of leaf nitrogen distribution in plant canopies. METHODS: We collected data on the nitrogen distribution and environmental variables from 393 plant canopies (100, 241 and 52 canopies for wheat, other herbaceous and woody species, respectively). KEY RESULTS: The trends were clearly different between wheat and other species; the photosynthetic nitrogen distribution coefficient (Kb) was mainly determined by leaf area index (LAI) in wheat, whereas it was correlated with the light extinction coefficient (KL) and LAI in other species. Some other variables were also found to influence Kb We present the best equations for Kb as a function of environmental variables and canopy characteristics. As a more simple function, Kb = 0·5KL can be used for canopies of species other than wheat. Sensitivity analyses using a terrestrial carbon flux model showed that gross primary production tended to be more sensitive to the Kb value especially when nitrogen content of the uppermost leaf was fixed. CONCLUSION: Our results reveal that nitrogen distribution is mainly driven by the vertical light gradient but other factors such as LAI also have significant effects. Our equations contribute to an improvement in the projection of plant productivity and cycling of carbon and nitrogen in terrestrial ecosystems.


Asunto(s)
Carbono/metabolismo , Modelos Biológicos , Nitrógeno/metabolismo , Fotosíntesis/fisiología , Triticum/fisiología , Luz , Fotosíntesis/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Triticum/efectos de la radiación
19.
New Phytol ; 207(4): 1213-22, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25898768

RESUMEN

Interspecific differences in functional traits are a key factor for explaining the positive diversity-productivity relationship in plant communities. However, the role of intraspecific variation attributable to phenotypic plasticity in diversity-productivity relationships has largely been overlooked. By taking a wheat (Triticum aestivum)-maize (Zea mays) intercrop as an elementary example of mixed vegetation, we show that plasticity in plant traits is an important factor contributing to complementary light capture in species mixtures. We conceptually separated net biodiversity effect into the effect attributable to interspecific trait differences and species distribution (community structure effect), and the effect attributable to phenotypic plasticity. Using a novel plant architectural modelling approach, whole-vegetation light capture was simulated for scenarios with and without plasticity based on empirical plant trait data. Light capture was 23% higher in the intercrop with plasticity than the expected value from monocultures, of which 36% was attributable to community structure and 64% was attributable to plasticity. For wheat, plasticity in tillering was the main reason for increased light capture, whereas for intercropped maize, plasticity induced a major reduction in light capture. The results illustrate the potential of plasticity for enhancing resource acquisition in mixed stands, and indicate the importance of plasticity in the performance of species-diverse plant communities.


Asunto(s)
Luz , Triticum/fisiología , Triticum/efectos de la radiación , Zea mays/fisiología , Zea mays/efectos de la radiación , Simulación por Computador , Flores/fisiología , Flores/efectos de la radiación , Fenotipo , Fotosíntesis/efectos de la radiación , Estaciones del Año , Triticum/anatomía & histología , Zea mays/anatomía & histología
20.
J Exp Bot ; 66(9): 2487-99, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25675956

RESUMEN

Plant leaves commonly exhibit a thin, flat structure that facilitates a high light interception per unit mass, but may increase risks of mechanical failure when subjected to gravity, wind and herbivory as well as other stresses. Leaf laminas are composed of thin epidermis layers and thicker intervening mesophyll layers, which resemble a composite material, i.e. sandwich structure, used in engineering constructions (e.g. airplane wings) where high bending stiffness with minimum weight is important. Yet, to what extent leaf laminas are mechanically designed and behave as a sandwich structure remains unclear. To resolve this issue, we developed and applied a novel method to estimate stiffness of epidermis- and mesophyll layers without separating the layers. Across a phylogenetically diverse range of 36 angiosperm species, the estimated Young's moduli (a measure of stiffness) of mesophyll layers were much lower than those of the epidermis layers, indicating that leaf laminas behaved similarly to efficient sandwich structures. The stiffness of epidermis layers was higher in evergreen species than in deciduous species, and strongly associated with cuticle thickness. The ubiquitous nature of sandwich structures in leaves across studied species suggests that the sandwich structure has evolutionary advantages as it enables leaves to be simultaneously thin and flat, efficiently capturing light and maintaining mechanical stability under various stresses.


Asunto(s)
Magnoliopsida/anatomía & histología , Biodiversidad , Fenómenos Biomecánicos , Luz , Magnoliopsida/fisiología , Fotosíntesis , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA