RESUMEN
α-Quartz (SiO2) is one of the most widely used piezoelectric materials. However, the challenges associated with the control of the crystallization and the growth process limit its production to the hydrothermal growth of bulk crystals. GeO2 can also crystallize into the α-quartz phase, with a higher piezoelectric response and better thermal stability than SiO2. In a previous study, we have found that GeO2 crystallization on nonquartz substrates shows a tendency to form spherulites with a randomized orientation; while epitaxial growth of crystalline GeO2 thin films can take place on quartz (SiO2) substrates. However, in the latter case, the α-ß phase transition that takes place in both substrates and thin films during heating deteriorates the long-range order and, thus, the piezoelectric properties. Here, we report the ousting of spherulitic growth by using a buffer layer. Using TiO2 as a buffer layer, the epitaxial strain of the substrates can be transferred to the growing films, leading to the oriented crystallization of GeO2 in the α-quartz phase. Moreover, since the TiO2 separates the substrates and the thin films, the thermal stability of the GeO2 is kept across the substrate's phase transitions. Our findings reveal the complexity of the crystallization process of quartz thin films and present a way to eliminate the tendency for spherulitic growth of quartz thin films by epitaxial strain.
RESUMEN
[Formula: see text] with the [Formula: see text]-quartz structure is one of the most popular piezoelectrics. It is widely used in crystal oscillators, bulk acoustic wave (BAW) devices, surface acoustic wave (SAW) devices, and so on. [Formula: see text] can also be crystallized into the [Formula: see text]-quartz structure and it has better piezoelectric properties, with higher piezoelectric coefficient and electromechanical coupling coefficients, than [Formula: see text]. Experiments on bulk crystals and theoretical studies have shown that these properties can be tuned by varying the Si/Ge ratio in the [Formula: see text] solid solution. However, to the best of our knowledge, thin films of [Formula: see text] quartz have never been reported. Here we present the successful crystallization of [Formula: see text] thin films in the [Formula: see text]-quartz phase on quartz substrates ([Formula: see text]) with x up to 0.75. Generally, the films grow semi-epitaxially, with the same orientation as the substrates. Interestingly, the [Formula: see text] composition grows fully strained by the quartz substrates and this leads to the formation of circular quartz domains with an ordered Dauphiné twin structure. These studies represent a first step towards the optimization of piezoelectric quartz thin films for high frequency (> 5 GHz) applications.
RESUMEN
To obtain crystalline thin films of alpha-Quartz represents a challenge due to the tendency for the material towards spherulitic growth. Thus, understanding the mechanisms that give rise to spherulitic growth can help regulate the growth process. Here the spherulitic type of 2D crystal growth in thin amorphous Quartz films was analyzed by electron back-scatter diffraction (EBSD). EBSD was used to measure the size, orientation, and rotation of crystallographic grains in polycrystalline SiO2 and GeO2 thin films with high spatial resolution. Individual spherulitic Quartz crystal colonies contain primary and secondary single crystal fibers, which grow radially from the colony center towards its edge, and fill a near circular crystalline area completely. During their growth, individual fibers form so-called rotational crystals, when some lattice planes are continuously bent. The directions of the lattice rotation axes in the fibers were determined by an enhanced analysis of EBSD data. A possible mechanism, including the generation of the particular type of dislocation(s), is suggested.
RESUMEN
The growth of α-quartz-based piezoelectric thin films opens the door to higher-frequency electromechanical devices than those available through top-down approaches. We report on the growth of SiO2/GeO2 thin films by pulsed laser deposition and their subsequent crystallization. By introducing a devitrifying agent uniformly within the film, we are able to obtain the α-quartz phase in the form of platelets with lateral sizes above 100 µm at accessible temperatures. Films containing different amounts of devitrifying agent are investigated, and their crystallinity is ascertained with X-ray diffraction and electron back-scatter diffraction. Our work highlights the difficulty in crystallization when competing phases arise that have markedly different crystalline orientation.
RESUMEN
Ultrathin Hf1-x Zr x O2 films have attracted tremendous interest since they show ferroelectric behavior at the nanoscale, where other ferroelectrics fail to stabilize the polar state. Their promise to revolutionize the electronics landscape comes from the well-known Si compatibility of HfO2 and ZrO2, which (in amorphous form) are already used as gate oxides in MOSFETs. However, the recently discovered crystalline ferroelectric phases of hafnia-based films have been grown on Si only in polycrystalline form. Better ferroelectric properties and improved quality of the interfaces have been achieved in epitaxially grown films, but these are only obtained on non-Si and buffered Si(100) substrates. Here, we report direct epitaxy of polar Hf1-x Zr x O2 phases on Si, enabled via in situ scavenging of the native a-SiO x layer by Zr (Hf), using pulsed laser deposition under ballistic deposition conditions. We investigate the effect of substrate orientation and film composition to provide fundamental insights into the conditions that lead to the preferential stabilization of polar phases, namely, the rhombohedral (r-) and the orthorhombic (o-) phases, against the nonpolar monoclinic (m-), on Si.
RESUMEN
We use an original water-based chemical method to grow pure epitaxial BiFeO3 (BFO) ultra-thin films with excellent piezoelectric properties. Particularly, we show that this novel chemical route produces higher natural ferroelectric domain size distribution and coercive field compared to similar BFO films grown by physical methods. Moreover, we measured the d33 piezoelectric coefficient of 60 nm thick BFO films by a direct approach, using Direct Piezoelectric Force Microscopy (DPFM). As a result, first piezo-generated charge maps of a very thin BFO layer were obtained applying this novel technology. We also performed a comparative study of the d33 coefficients between standard PFM analysis and DPFM microscopy showing similar values i.e. 17 pm V-1 and 22 pC N-1, respectively. Finally, we proved that the directionality of the piezoelectric effect in BFO ferroelectric thin films is preserved at low thickness dimensions demonstrating the potential of chemical processes for the development of low cost functional ferroelectric and piezoelectric devices.