Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
PLoS Biol ; 22(1): e3002462, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38289969

RESUMEN

Mutations in the gene encoding Cu-Zn superoxide dismutase 1 (SOD1) cause a subset of familial amyotrophic lateral sclerosis (fALS) cases. A shared effect of these mutations is that SOD1, which is normally a stable dimer, dissociates into toxic monomers that seed toxic aggregates. Considerable research effort has been devoted to developing compounds that stabilize the dimer of fALS SOD1 variants, but unfortunately, this has not yet resulted in a treatment. We hypothesized that cyclic thiosulfinate cross-linkers, which selectively target a rare, 2 cysteine-containing motif, can stabilize fALS-causing SOD1 variants in vivo. We created a library of chemically diverse cyclic thiosulfinates and determined structure-cross-linking-activity relationships. A pre-lead compound, "S-XL6," was selected based upon its cross-linking rate and drug-like properties. Co-crystallographic structure clearly establishes the binding of S-XL6 at Cys 111 bridging the monomers and stabilizing the SOD1 dimer. Biophysical studies reveal that the degree of stabilization afforded by S-XL6 (up to 24°C) is unprecedented for fALS, and to our knowledge, for any protein target of any kinetic stabilizer. Gene silencing and protein degrading therapeutic approaches require careful dose titration to balance the benefit of diminished fALS SOD1 expression with the toxic loss-of-enzymatic function. We show that S-XL6 does not share this liability because it rescues the activity of fALS SOD1 variants. No pharmacological agent has been proven to bind to SOD1 in vivo. Here, using a fALS mouse model, we demonstrate oral bioavailability; rapid engagement of SOD1G93A by S-XL6 that increases SOD1G93A's in vivo half-life; and that S-XL6 crosses the blood-brain barrier. S-XL6 demonstrated a degree of selectivity by avoiding off-target binding to plasma proteins. Taken together, our results indicate that cyclic thiosulfinate-mediated SOD1 stabilization should receive further attention as a potential therapeutic approach for fALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Ratones , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Cisteína/genética , Mutación , Superóxido Dismutasa/genética , Superóxido Dismutasa/química , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética
2.
Proc Natl Acad Sci U S A ; 119(30): e2205664119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35862453

RESUMEN

Many enzymes utilize redox-coupled centers for performing catalysis where these centers are used to control and regulate the transfer of electrons required for catalysis, whose untimely delivery can lead to a state incapable of binding the substrate, i.e., a dead-end enzyme. Copper nitrite reductases (CuNiRs), which catalyze the reduction of nitrite to nitric oxide (NO), have proven to be a good model system for studying these complex processes including proton-coupled electron transfer (ET) and their orchestration for substrate binding/utilization. Recently, a two-domain CuNiR from a Rhizobia species (Br2DNiR) has been discovered with a substantially lower enzymatic activity where the catalytic type-2 Cu (T2Cu) site is occupied by two water molecules requiring their displacement for the substrate nitrite to bind. Single crystal spectroscopy combined with MSOX (multiple structures from one crystal) for both the as-isolated and nitrite-soaked crystals clearly demonstrate that inter-Cu ET within the coupled T1Cu-T2Cu redox system is heavily gated. Laser-flash photolysis and optical spectroscopy showed rapid ET from photoexcited NADH to the T1Cu center but little or no inter-Cu ET in the absence of nitrite. Furthermore, incomplete reoxidation of the T1Cu site (∼20% electrons transferred) was observed in the presence of nitrite, consistent with a slow formation of NO species in the serial structures of the MSOX movie obtained from the nitrite-soaked crystal, which is likely to be responsible for the lower activity of this CuNiR. Our approach is of direct relevance for studying redox reactions in a wide range of biological systems including metalloproteins that make up at least 30% of all proteins.


Asunto(s)
Cobre , Nitrito Reductasas , Nitritos , Catálisis , Cobre/química , Nitrito Reductasas/química , Nitritos/química , Oxidación-Reducción , Análisis Espectral
3.
FASEB J ; 37(7): e22981, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37246607

RESUMEN

Oral and gut microbiomes are important for the maintenance of homeostasis in the human body. Altered or disturbed mutualism between their members results in dysbiosis with local injury and subsequent systemic diseases. The high bacterial density causes intense competition among microbiome residents to acquire nutrients, including iron and heme, the latter of high importance for heme auxotrophic members of the Bacteroidetes phylum. Our main hypothesis is that the heme acquisition mechanism, with the leading role played by a novel HmuY family of hemophore-like proteins, can be used to fulfill nutritional requirements and increase virulence. We characterized HmuY homologs expressed by Bacteroides fragilis and compared their properties with the first representative of this family, the HmuY protein of Porphyromonas gingivalis. In contrast to other Bacteroidetes members, B. fragilis produces three HmuY homologs (Bfr proteins). All bfr transcripts were produced at higher levels in bacteria starved of iron and heme (fold change increase ~60, ~90, and ~70 for bfrA, bfrB, and bfrC, respectively). X-ray protein crystallography showed that B. fragilis Bfr proteins are structurally similar to P. gingivalis HmuY and to other homologs, except for differences in the potential heme-binding pockets. BfrA binds heme, mesoheme, and deuteroheme, but preferentially under reducing conditions, using Met175 and Met146 to coordinate heme iron. BfrB binds iron-free protoporphyrin IX and coproporphyrin III, whereas BfrC does not bind porphyrins. HmuY is capable of heme sequestration from BfrA, which might increase the ability of P. gingivalis to cause dysbiosis also in the gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Porphyromonas gingivalis , Humanos , Bacteroides fragilis/genética , Bacteroides fragilis/metabolismo , Disbiosis , Hemo/metabolismo , Proteínas Bacterianas/metabolismo
4.
PLoS Biol ; 17(2): e3000141, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30735496

RESUMEN

Superoxide dismutase-1 (SOD1) maturation comprises a string of posttranslational modifications which transform the nascent peptide into a stable and active enzyme. The successive folding, metal ion binding, and disulphide acquisition steps in this pathway can be catalysed through a direct interaction with the copper chaperone for SOD1 (CCS). This process confers enzymatic activity and reduces access to noncanonical, aggregation-prone states. Here, we present the functional mechanisms of human copper chaperone for SOD1 (hCCS)-catalysed SOD1 activation based on crystal structures of reaction precursors, intermediates, and products. Molecular recognition of immature SOD1 by hCCS is driven by several interface interactions, which provide an extended surface upon which SOD1 folds. Induced-fit complexation is reliant on the structural plasticity of the immature SOD1 disulphide sub-loop, a characteristic which contributes to misfolding and aggregation in neurodegenerative disease. Complexation specifically stabilises the SOD1 disulphide sub-loop, priming it and the active site for copper transfer, while delaying disulphide formation and complex dissociation. Critically, a single destabilising amino acid substitution within the hCCS interface reduces hCCS homodimer affinity, creating a pool of hCCS available to interact with immature SOD1. hCCS substrate specificity, segregation between solvent and biological membranes, and interaction transience are direct results of this substitution. In this way, hCCS-catalysed SOD1 maturation is finessed to minimise copper wastage and reduce production of potentially toxic SOD1 species.


Asunto(s)
Cobre/química , Chaperonas Moleculares/química , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Sitios de Unión , Clonación Molecular , Cobre/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Evolución Molecular , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
5.
Q Rev Biophys ; 52: e12, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31760962

RESUMEN

Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/metabolismo , Animales , Fenómenos Biofísicos , Humanos
6.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30670555

RESUMEN

Talaromyces marneffei infection causes talaromycosis (previously known as penicilliosis), a very important opportunistic systematic mycosis in immunocompromised patients. Different virulence mechanisms in T. marneffei have been proposed and investigated. In the sera of patients with talaromycosis, Mp1 protein (Mp1p), a secretory galactomannoprotein antigen with two tandem ligand-binding domains (Mp1p-LBD1 and Mp1p-LBD2), was found to be abundant. Mp1p-LBD2 was reported to possess a hydrophobic cavity to bind copurified palmitic acid (PLM). It was hypothesized that capturing of lipids from human hosts by expressing a large quantity of Mp1p is a virulence mechanism of T. marneffei It was shown that expression of Mp1p enhanced the intracellular survival of T. marneffei by suppressing proinflammatory responses. Mechanistic study of Mp1p-LBD2 suggested that arachidonic acid (AA), a precursor of paracrine signaling molecules for regulation of inflammatory responses, is the major physiological target of Mp1p-LBD2. In this study, we use crystallographic and biochemical techniques to further demonstrate that Mp1p-LBD1, the previously unsolved first lipid binding domain of Mp1p, is also a strong AA-binding domain in Mp1p. These studies on Mp1p-LBD1 support the idea that the highly expressed Mp1p is an effective AA-capturing protein. Each Mp1p can bind up to 4 AA molecules. The crystal structure of Mp1p-LBD1-LBD2 has also been solved, showing that both LBDs are likely to function independently with a flexible linker between them. T. marneffei and potentially other pathogens highly expressing and secreting proteins similar to Mp1p can severely disturb host signaling cascades during proinflammatory responses by reducing the availabilities of important paracrine signaling molecules.


Asunto(s)
Ácido Araquidónico/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Micosis/microbiología , Talaromyces/metabolismo , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Ácido Araquidónico/química , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Humanos , Espectrometría de Masas , Micosis/genética , Micosis/inmunología , Dominios Proteicos , Talaromyces/química , Talaromyces/genética , Factores de Virulencia/genética
7.
Hum Mol Genet ; 26(13): 2426-2435, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28398555

RESUMEN

Dystonia is a neurological movement disorder that forces the body into twisting, repetitive movements or sometimes painful abnormal postures. With the advent of next-generation sequencing technologies, the homozygous mutations T71N and A190T in the neuronal calcium sensor (NCS) hippocalcin were identified as the genetic cause of primary isolated dystonia (DYT2 dystonia). However, the effect of these mutations on the physiological role of hippocalcin has not yet been elucidated. Using a multidisciplinary approach, we demonstrated that hippocalcin oligomerises in a calcium-dependent manner and binds to voltage-gated calcium channels. Mutations T71N and A190T in hippocalcin did not affect stability, calcium-binding affinity or translocation to cellular membranes (Ca2+/myristoyl switch). We obtained the first crystal structure of hippocalcin and alignment with other NCS proteins showed significant variability in the orientation of the C-terminal part of the molecule, the region expected to be important for target binding. We demonstrated that the disease-causing mutations did not affect the structure of the protein, however both mutants showed a defect in oligomerisation. In addition, we observed an increased calcium influx in KCl-depolarised cells expressing mutated hippocalcin, mostly driven by N-type voltage-gated calcium channels. Our data demonstrate that the dystonia-causing mutations strongly affect hippocalcin cellular functions which suggest a central role for perturbed calcium signalling in DYT2 dystonia.


Asunto(s)
Distonía/genética , Hipocalcina/genética , Hipocalcina/metabolismo , Calcio/metabolismo , Canales de Calcio/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/genética , Técnicas de Cultivo de Célula , Membrana Celular/metabolismo , Trastornos Distónicos , Hipocalcina/fisiología , Humanos , Mutación , Ácido Mirístico/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo
8.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29343583

RESUMEN

Japanese encephalitis virus (JEV) is a mosquito-transmitted flavivirus that is closely related to other emerging viral pathogens, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV). JEV infection can result in meningitis and encephalitis, which in severe cases cause permanent brain damage and death. JEV occurs predominantly in rural areas throughout Southeast Asia, the Pacific Islands, and the Far East, causing around 68,000 cases of infection worldwide each year. In this report, we present a 2.1-Å-resolution crystal structure of the C-terminal ß-ladder domain of JEV nonstructural protein 1 (NS1-C). The surface charge distribution of JEV NS1-C is similar to those of WNV and ZIKV but differs from that of DENV. Analysis of the JEV NS1-C structure, with in silico molecular dynamics simulation and experimental solution small-angle X-ray scattering, indicates extensive loop flexibility on the exterior of the protein. This, together with the surface charge distribution, indicates that flexibility influences the protein-protein interactions that govern pathogenicity. These factors also affect the interaction of NS1 with the 22NS1 monoclonal antibody, which is protective against West Nile virus infection. Liposome and heparin binding assays indicate that only the N-terminal region of NS1 mediates interaction with membranes and that sulfate binding sites common to NS1 structures are not glycosaminoglycan binding interfaces. This report highlights several differences between flavivirus NS1 proteins and contributes to our understanding of their structure-pathogenic function relationships.IMPORTANCE JEV is a major cause of viral encephalitis in Asia. Despite extensive vaccination, epidemics still occur. Nonstructural protein 1 (NS1) plays a role in viral replication, and, because it is secreted, it can exhibit a wide range of interactions with host proteins. NS1 sequence and protein folds are conserved within the Flavivirus genus, but variations in NS1 protein-protein interactions among viruses likely contribute to differences in pathogenesis. Here, we compared characteristics of the C-terminal ß-ladder domain of NS1 between flaviviruses, including surface charge, loop flexibility, epitope cross-reactivity, membrane adherence, and glycosaminoglycan binding. These structural features are central to NS1 functionality and may provide insight into the development of diagnostic tests and therapeutics.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie)/química , Proteínas no Estructurales Virales/química , Cristalografía por Rayos X , Virus de la Encefalitis Japonesa (Especie)/genética , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Heparina/química , Liposomas/química , Dominios Proteicos , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
9.
Nature ; 496(7443): 123-6, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23535590

RESUMEN

Electron transfer reactions are essential for life because they underpin oxidative phosphorylation and photosynthesis, processes leading to the generation of ATP, and are involved in many reactions of intermediary metabolism. Key to these roles is the formation of transient inter-protein electron transfer complexes. The structural basis for the control of specificity between partner proteins is lacking because these weak transient complexes have remained largely intractable for crystallographic studies. Inter-protein electron transfer processes are central to all of the key steps of denitrification, an alternative form of respiration in which bacteria reduce nitrate or nitrite to N2 through the gaseous intermediates nitric oxide (NO) and nitrous oxide (N2O) when oxygen concentrations are limiting. The one-electron reduction of nitrite to NO, a precursor to N2O, is performed by either a haem- or copper-containing nitrite reductase (CuNiR) where they receive an electron from redox partner proteins a cupredoxin or a c-type cytochrome. Here we report the structures of the newly characterized three-domain haem-c-Cu nitrite reductase from Ralstonia pickettii (RpNiR) at 1.01 Å resolution and its M92A and P93A mutants. Very high resolution provides the first view of the atomic detail of the interface between the core trimeric cupredoxin structure of CuNiR and the tethered cytochrome c domain that allows the enzyme to function as an effective self-electron transfer system where the donor and acceptor proteins are fused together by genomic acquisition for functional advantage. Comparison of RpNiR with the binary complex of a CuNiR with a donor protein, AxNiR-cytc551 (ref. 6), and mutagenesis studies provide direct evidence for the importance of a hydrogen-bonded water at the interface in electron transfer. The structure also provides an explanation for the preferential binding of nitrite to the reduced copper ion at the active site in RpNiR, in contrast to other CuNiRs where reductive inactivation occurs, preventing substrate binding.


Asunto(s)
Transporte de Electrón , Nitrito Reductasas/química , Nitrito Reductasas/metabolismo , Ralstonia pickettii/enzimología , Azurina/química , Azurina/metabolismo , Dominio Catalítico , Cobre/química , Cobre/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nitrito Reductasas/genética , Nitritos/química , Nitritos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Protones , Agua/química , Agua/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(8): 2104-9, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26858410

RESUMEN

The principal methyl donor of the cell, S-adenosylmethionine (SAMe), is produced by the highly conserved family of methionine adenosyltranferases (MATs) via an ATP-driven process. These enzymes play an important role in the preservation of life, and their dysregulation has been tightly linked to liver and colon cancers. We present crystal structures of human MATα2 containing various bound ligands, providing a "structural movie" of the catalytic steps. High- to atomic-resolution structures reveal the structural elements of the enzyme involved in utilization of the substrates methionine and adenosine and in formation of the product SAMe. MAT enzymes are also able to produce S-adenosylethionine (SAE) from substrate ethionine. Ethionine, an S-ethyl analog of the amino acid methionine, is known to induce steatosis and pancreatitis. We show that SAE occupies the active site in a manner similar to SAMe, confirming that ethionine also uses the same catalytic site to form the product SAE.


Asunto(s)
Metionina Adenosiltransferasa/química , S-Adenosilmetionina/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Humanos
11.
Proc Natl Acad Sci U S A ; 112(3): 755-60, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25564664

RESUMEN

Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Q(o) site (one of two potential binding sites within cytochrome bc1 using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Q(o) site but bind at the Q(i )site. The discovery that these compounds bind at the Q(i) site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Q(i) also explains the ability of this class to overcome parasite Q(o)-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles.


Asunto(s)
Antimaláricos/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Piridonas/metabolismo , Sitios de Unión , Complejo III de Transporte de Electrones/química , Simulación del Acoplamiento Molecular
12.
Proc Natl Acad Sci U S A ; 111(11): 4309-14, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591609

RESUMEN

Over the last two decades many secrets of the age-related human neural proteinopathies have been revealed. A common feature of these diseases is abnormal, and possibly pathogenic, aggregation of specific proteins in the effected tissue often resulting from inherent or decreased structural stability. An archetype example of this is superoxide dismutase-1, the first genetic factor to be linked with amyotrophic lateral sclerosis (ALS). Mutant or posttranslationally modified TAR DNA binding protein-32 (TDP-43) is also strongly associated with ALS and an increasingly large number of other neurodegenerative diseases, including frontotemporal lobar degeneration (FTLD). Cytoplasmic mislocalization and elevated half-life is a characteristic of mutant TDP-43. Furthermore, patient age at the onset of disease symptoms shows a good inverse correlation with mutant TDP-43 half-life. Here we show that ALS and FTLD-associated TDP-43 mutations in the central nucleic acid binding domains lead to elevated half-life and this is commensurate with increased thermal stability and inhibition of aggregation. It is achieved without impact on secondary, tertiary, or quaternary structure. We propose that tighter structural cohesion contributes to reduced protein turnover, increasingly abnormal proteostasis and, ultimately, faster onset of disease symptoms. These results contrast our perception of neurodegenerative diseases as misfolded proteinopathies and delineate a novel path from the molecular characteristics of mutant TDP-43 to aberrant cellular effects and patient phenotype.


Asunto(s)
Proteínas de Unión al ADN/genética , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/genética , Fluorescencia , Semivida , Humanos , Mutación/genética , Enfermedades Neurodegenerativas/fisiopatología , Estabilidad Proteica , Dispersión del Ángulo Pequeño
13.
Proc Natl Acad Sci U S A ; 108(38): 15780-5, 2011 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-21900609

RESUMEN

Carbon monoxide (CO) is a product of haem metabolism and organisms must evolve strategies to prevent endogenous CO poisoning of haemoproteins. We show that energy costs associated with conformational changes play a key role in preventing irreversible CO binding. AxCYTcp is a member of a family of haem proteins that form stable 5c-NO and 6c-CO complexes but do not form O(2) complexes. Structure of the AxCYTcp-CO complex at 1.25 Å resolution shows that CO binds in two conformations moderated by the extent of displacement of the distal residue Leu16 toward the haem 7-propionate. The presence of two CO conformations is confirmed by cryogenic resonance Raman data. The preferred linear Fe-C-O arrangement (170 ± 8°) is accompanied by a flip of the propionate from the distal to proximal face of the haem. In the second conformation, the Fe-C-O unit is bent (158 ± 8°) with no flip of propionate. The energetic cost of the CO-induced Leu-propionate movements is reflected in a 600 mV (57.9 kJ mol(-1)) decrease in haem potential, a value in good agreement with density functional theory calculations. Substitution of Leu by Ala or Gly (structures determined at 1.03 and 1.04 Å resolutions) resulted in a haem site that binds CO in the linear mode only and where no significant change in redox potential is observed. Remarkably, these variants were isolated as ferrous 6c-CO complexes, attributable to the observed eight orders of magnitude increase in affinity for CO, including an approximately 10,000-fold decrease in the rate of dissociation. These new findings have wide implications for preventing CO poisoning of gas-binding haem proteins.


Asunto(s)
Proteínas Bacterianas/química , Monóxido de Carbono/química , Citocromos c'/química , Conformación Proteica , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Monóxido de Carbono/metabolismo , Intoxicación por Monóxido de Carbono/metabolismo , Intoxicación por Monóxido de Carbono/prevención & control , Cristalización , Cristalografía por Rayos X , Citocromos c'/genética , Citocromos c'/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Hemo/química , Hemo/metabolismo , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Mutación , Oxidación-Reducción , Unión Proteica , Espectrometría Raman
14.
Microbiol Mol Biol Rev ; 88(1): e0013123, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38305743

RESUMEN

SUMMARY: Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.


Asunto(s)
Bacteroides , Microbioma Gastrointestinal , Histidina , Hemo/química , Hemo/metabolismo , Hierro/metabolismo , Metionina
15.
J Mol Biol ; 436(18): 168706, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39002715

RESUMEN

Copper nitrite reductases (CuNiRs) exhibit a strong pH dependence of their catalytic activity. Structural movies can be obtained by serially recording multiple structures (frames) from the same spot of a crystal using the MSOX serial crystallography approach. This method has been combined with on-line single crystal optical spectroscopy to capture the pH-dependent structural changes that accompany during turnover of CuNiRs from two Rhizobia species. The structural movies, initiated by the redox activation of a type-1 copper site (T1Cu) via X-ray generated photoelectrons, have been obtained for the substrate-free and substrate-bound states at low (high enzymatic activity) and high (low enzymatic activity) pH. At low pH, formation of the product nitric oxide (NO) is complete at the catalytic type-2 copper site (T2Cu) after a dose of 3 MGy (frame 5) with full bleaching of the T1Cu ligand-to-metal charge transfer (LMCT) 455 nm band (S(σ)Cys â†’ T1Cu2+) which in itself indicates the electronic route of proton-coupled electron transfer (PCET) from T1Cu to T2Cu. In contrast at high pH, the changes in optical spectra are relatively small and the formation of NO is only observed in later frames (frame 15 in Br2DNiR, 10 MGy), consistent with the loss of PCET required for catalysis. This is accompanied by decarboxylation of the catalytic AspCAT residue, with CO2 trapped in the catalytic pocket.


Asunto(s)
Cobre , Nitrito Reductasas , Nitrito Reductasas/química , Nitrito Reductasas/metabolismo , Concentración de Iones de Hidrógeno , Cobre/metabolismo , Cobre/química , Oxidación-Reducción , Cristalografía por Rayos X , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Modelos Moleculares , Dominio Catalítico , Análisis Espectral/métodos , Conformación Proteica
16.
Artículo en Inglés | MEDLINE | ID: mdl-23545635

RESUMEN

The crystal structure of a conserved hypothetical protein, GK0453, from Geobacillus kaustophilus has been determined to 2.2 Å resolution. The crystal belonged to space group P4(3)2(1)2, with unit-cell parameters a = b = 75.69, c = 64.18 Å. The structure was determined by the molecular-replacement method and was refined to a final R factor of 22.6% (R(free) = 26.3%). Based on structural homology, the GK0453 protein possesses two independent binding sites and hence it may simultaneously interact with two proteins or with a protein and a nucleic acid.


Asunto(s)
Proteínas Bacterianas/química , Geobacillus/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Homología Estructural de Proteína
17.
Nat Commun ; 14(1): 3416, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296134

RESUMEN

Quinol-dependent nitric oxide reductases (qNORs) are considered members of the respiratory heme-copper oxidase superfamily, are unique to bacteria, and are commonly found in pathogenic bacteria where they play a role in combating the host immune response. qNORs are also essential enzymes in the denitrification pathway, catalysing the reduction of nitric oxide to nitrous oxide. Here, we determine a 2.2 Å cryoEM structure of qNOR from Alcaligenes xylosoxidans, an opportunistic pathogen and a denitrifying bacterium of importance in the nitrogen cycle. This high-resolution structure provides insight into electron, substrate, and proton pathways, and provides evidence that the quinol binding site not only contains the conserved His and Asp residues but also possesses a critical Arg (Arg720) observed in cytochrome bo3, a respiratory quinol oxidase.


Asunto(s)
Hidroquinonas , Óxido Nítrico , Óxido Nítrico/metabolismo , Hidroquinonas/química , Oxidorreductasas/metabolismo , Bacterias/metabolismo
18.
Biochim Biophys Acta ; 1814(6): 778-84, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21215826

RESUMEN

High resolution protein crystallography using synchrotron radiation is one of the most powerful tools in modern biology. Improvements in resolution have arisen from the use of X-ray beamlines with higher brightness and flux and the development of advanced detectors. However, it is increasingly recognised that the benefits brought by these advances have an associated cost, namely deleterious effects of X-ray radiation on the sample (radiation damage). In particular, X-ray induced reduction and damage to redox centres has been shown to occur much more rapidly than other radiation damage effects, such as loss of resolution or damage to disulphide bridges. Selection of an appropriate combination of in-situ single crystal spectroscopies during crystallographic experiments, such as UV-visible absorption and X-ray absorption spectroscopy (XAFS), allows for effective monitoring of redox states in protein crystals in parallel with structure determination. Such approaches are also essential in cases where catalytic intermediate species are generated by exposure to the X-ray beam. In this article, we provide a number of examples in which multiple single crystal spectroscopies have been key to understanding the redox status of Fe and Cu centres in crystal structures. This article is part of a Special Issue entitled: Protein Structure and Function in the Crystalline State.


Asunto(s)
Cristalografía por Rayos X/métodos , Metaloproteínas/química , Proteínas Bacterianas/química , Dominio Catalítico , Cobre/química , Grupo Citocromo b/química , Ferritinas/química , Hierro/química , Modelos Moleculares , Nitrito Reductasas/química , Oxidación-Reducción , Reproducibilidad de los Resultados , Espectrofotometría Ultravioleta , Análisis Espectral , Espectroscopía de Absorción de Rayos X
19.
Biology (Basel) ; 11(8)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35892964

RESUMEN

Antimalarials targeting the ubiquinol-oxidation (Qo) site of the Plasmodium falciparum bc1 complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Qo site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc1 complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc1. Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian's equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Qi sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc1 with improved antimalarial properties.

20.
Biochemistry ; 50(19): 4121-31, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21469743

RESUMEN

We demonstrated recently that two protons are involved in reduction of nitrite to nitric oxide through a proton-coupled electron transfer (ET) reaction catalyzed by the blue Cu-dependent nitrite reductase (Cu NiR) of Alcaligenes xylosoxidans (AxNiR). Here, the functionality of two putative proton channels, one involving Asn90 and the other His254, is studied using single (N90S, H254F) and double (N90S--H254F) mutants. All mutants studied are active, indicating that protons are still able to reach the active site. The H254F mutation has no effect on the catalytic activity, while the N90S mutation results in ~70% decrease in activity. Laser flash-photolysis experiments show that in H254F and wild-type enzyme electrons enter at the level of the T1Cu and then redistribute between the two Cu sites. Complete ET from T1Cu to T2Cu occurs only when nitrite binds at the T2Cu site. This indicates that substrate binding to T2Cu promotes ET from T1Cu, suggesting that the enzyme operates an ordered mechanism. In fact, in the N90S and N90S--H254F variants, where the T1Cu site redox potential is elevated by ∼60 mV, inter-Cu ET is only observed in the presence of nitrite. From these results it is evident that the Asn90 channel is the main proton channel in AxNiR, though protons can still reach the active site if this channel is disrupted. Crystallographic structures provide a clear structural rationale for these observations, including restoration of the proton delivery via a significant movement of the loop connecting the T1Cu ligands Cys130 and His139 that occurs on binding of nitrite. Notably, a role for this loop in facilitating interaction of cytochrome c(551) with Cu NiR has been suggested previously based on a crystal structure of the binary complex.


Asunto(s)
Alcaligenes/enzimología , Dominio Catalítico , Cobre/química , Nitrito Reductasas/química , Protones , Alcaligenes/genética , Sustitución de Aminoácidos/genética , Asparagina/genética , Ácido Aspártico/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Transporte de Electrón/genética , Histidina/genética , Nitrito Reductasas/genética , Nitrito Reductasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA