RESUMEN
Osteoblasts are an important component of the hematopoietic microenvironment in bone. However, the mechanisms by which osteoblasts control hematopoiesis remain unknown. We show that augmented HIF signaling in osteoprogenitors results in HSC niche expansion associated with selective expansion of the erythroid lineage. Increased red blood cell production occurred in an EPO-dependent manner with increased EPO expression in bone and suppressed EPO expression in the kidney. In contrast, inactivation of HIF in osteoprogenitors reduced EPO expression in bone. Importantly, augmented HIF activity in osteoprogenitors protected mice from stress-induced anemia. Pharmacologic or genetic inhibition of prolyl hydroxylases1/2/3 in osteoprogenitors elevated EPO expression in bone and increased hematocrit. These data reveal an unexpected role for osteoblasts in the production of EPO and modulation of erythropoiesis. Furthermore, these studies demonstrate a molecular role for osteoblastic PHD/VHL/HIF signaling that can be targeted to elevate both HSCs and erythroid progenitors in the local hematopoietic microenvironment.
Asunto(s)
Eritropoyesis , Eritropoyetina/metabolismo , Osteoblastos/metabolismo , Transducción de Señal , Anemia/prevención & control , Animales , Células Precursoras Eritroides/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Riñón/metabolismo , Ratones , Factor de Transcripción Sp7 , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismoRESUMEN
BACKGROUND: miRNA therapeutics have gained attention during the past decade. These oligonucleotide treatments can modulate the expression of miRNAs in vivo and could be used to correct the imbalance of gene expression found in human diseases such as obesity, metabolic syndrome, and atherosclerosis. The in vivo efficacy of current anti-miRNA technologies hindered by physiological and cellular barriers to delivery into targeted cells and the nature of miRNAs that allows one to target an entire pathway that may lead to deleterious off-target effects. For these reasons, novel targeted delivery systems to inhibit miRNAs in specific tissues will be important for developing effective therapeutic strategies for numerous diseases including atherosclerosis. METHODS: We used pH low-insertion peptide (pHLIP) constructs as vehicles to deliver microRNA-33-5p (miR-33) antisense oligonucleotides to atherosclerotic plaques. Immunohistochemistry and histology analysis was performed to assess the efficacy of miR-33 silencing in atherosclerotic lesions. We also assessed how miR-33 inhibition affects gene expression in monocytes/macrophages by single-cell RNA transcriptomics. RESULTS: The anti-miR-33 conjugated pHLIP constructs are preferentially delivered to atherosclerotic plaque macrophages. The inhibition of miR-33 using pHLIP-directed macrophage targeting improves atherosclerosis regression by increasing collagen content and decreased lipid accumulation within vascular lesions. Single-cell RNA sequencing analysis revealed higher expression of fibrotic genes (Col2a1, Col3a1, Col1a2, Fn1, etc) and tissue inhibitor of metalloproteinase 3 (Timp3) and downregulation of Mmp12 in macrophages from atherosclerotic lesions targeted by pHLIP-anti-miR-33. CONCLUSIONS: This study provides proof of principle for the application of pHLIP for treating advanced atherosclerosis via pharmacological inhibition of miR-33 in macrophages that avoid the deleterious effects in other metabolic tissues. This may open new therapeutic opportunities for atherosclerosis-associated cardiovascular diseases via selective delivery of other protective miRNAs.
Asunto(s)
Aterosclerosis , MicroARNs , Placa Aterosclerótica , Antagomirs/metabolismo , Antagomirs/uso terapéutico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/terapia , Humanos , Macrófagos/metabolismo , MicroARNs/metabolismo , Placa Aterosclerótica/patologíaRESUMEN
Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3ß-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.
Asunto(s)
Aterosclerosis/tratamiento farmacológico , Desmosterol/farmacología , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/metabolismo , Vasos Coronarios , Células Espumosas/metabolismo , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Placa Aterosclerótica/metabolismo , Esteroles/metabolismoRESUMEN
Lipids are important modifiers of protein function, particularly as parts of lipoproteins, which transport lipophilic substances and mediate cellular uptake of circulating lipids. As such, lipids are of particular interest as blood biological markers for cardiovascular disease (CVD) as well as for conditions linked to CVD such as atherosclerosis, diabetes mellitus, obesity and dietary states. Notably, lipid research is particularly well developed in the context of CVD because of the relevance and multiple causes and risk factors of CVD. The advent of methods for high-throughput screening of biological molecules has recently resulted in the generation of lipidomic profiles that allow monitoring of lipid compositions in biological samples in an untargeted manner. These and other earlier advances in biomedical research have shaped the knowledge we have about lipids in CVD. To evaluate the knowledge acquired on the multiple biological functions of lipids in CVD and the trends in their research, we collected a dataset of references from the PubMed database of biomedical literature focused on plasma lipids and CVD in human and mouse. Using annotations from these records, we were able to categorize significant associations between lipids and particular types of research approaches, distinguish non-biological lipids used as markers, identify differential research between human and mouse models, and detect the increasingly mechanistic nature of the results in this field. Using known associations between lipids and proteins that metabolize or transport them, we constructed a comprehensive lipid-protein network, which we used to highlight proteins strongly connected to lipids found in the CVD-lipid literature. Our approach points to a series of proteins for which lipid-focused research would bring insights into CVD, including Prostaglandin G/H synthase 2 (PTGS2, a.k.a. COX2) and Acylglycerol kinase (AGK). In this review, we summarize our findings, putting them in a historical perspective of the evolution of lipid research in CVD.
RESUMEN
Platelet activity plays a major role in hemostasis with increased platelet activity likely contributing to the pathogenesis of atherothrombosis. We sought to identify associations between platelet activity variability and platelet-related genes in healthy controls. Transcriptional profiling of platelets revealed that WD-40 repeat domain 1 (WDR1), an enhancer of actin-depolymerizing factor activity, is downregulated in platelet messenger RNA (mRNA) from subjects with a hyperreactive platelet phenotype. We used the human megakaryoblastic cell line MEG-01 as an in vitro model for human megakaryocytes and platelets. Stimulation of MEG-01 with thrombin reduced levels of WDR1 transcripts and protein. WDR1 knockdown (KD) in MEG-01 cells increased adhesion and spreading in both the basal and activated states, increased F-actin content, and increased the basal intracellular calcium concentration. Platelet-like particles (PLPs) produced by WDR1 KD cells were fewer in number but larger than PLPs produced from unmodified MEG-01 cells, and had significantly increased adhesion in the basal state and upon thrombin activation. In contrast, WDR1 overexpression reversed the WDR1 KD phenotype of megakaryocytes and PLPs. To translate the clinical significance of these findings, WDR1 expression was measured in platelet RNA from subjects with established cardiovascular disease (n = 27) and age- and sex-matched controls (n = 10). The WDR1 mRNA and protein level was significantly lower in subjects with cardiovascular disease. These data suggest that WDR1 plays an important role in suppressing platelet activity, where it alters the actin cytoskeleton dynamics, and downregulation of WDR1 may contribute to the platelet-mediated pathogenesis of cardiovascular disease.
Asunto(s)
Aterosclerosis/metabolismo , Plaquetas/metabolismo , Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Proteínas de Microfilamentos/biosíntesis , Adhesividad Plaquetaria , Adulto , Aterosclerosis/genética , Aterosclerosis/patología , Plaquetas/patología , Línea Celular , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Humanos , Masculino , Megacariocitos/metabolismo , Megacariocitos/patología , Proteínas de Microfilamentos/genéticaRESUMEN
RATIONALE: Several lines of evidence indicate that the regulation of microRNA (miRNA) levels by different stimuli may contribute to the modulation of stimulus-induced responses. The miR-17-92 cluster has been linked to tumor development and angiogenesis, but its role in vascular endothelial growth factor-induced endothelial cell (EC) functions is unclear and its regulation is unknown. OBJECTIVE: The purpose of this study was to elucidate the mechanism by which VEGF regulates the expression of miR-17-92 cluster in ECs and determine its contribution to the regulation of endothelial angiogenic functions, both in vitro and in vivo. This was done by analyzing the effect of postnatal inactivation of miR-17-92 cluster in the endothelium (miR-17-92 iEC-KO mice) on developmental retinal angiogenesis, VEGF-induced ear angiogenesis, and tumor angiogenesis. METHODS AND RESULTS: Here, we show that Erk/Elk1 activation on VEGF stimulation of ECs is responsible for Elk-1-mediated transcription activation (chromatin immunoprecipitation analysis) of the miR-17-92 cluster. Furthermore, we demonstrate that VEGF-mediated upregulation of the miR-17-92 cluster in vitro is necessary for EC proliferation and angiogenic sprouting. Finally, we provide genetic evidence that miR-17-92 iEC-KO mice have blunted physiological retinal angiogenesis during development and diminished VEGF-induced ear angiogenesis and tumor angiogenesis. Computational analysis and rescue experiments show that PTEN (phosphatase and tensin homolog) is a target of the miR-17-92 cluster and is a crucial mediator of miR-17-92-induced EC proliferation. However, the angiogenic transcriptional program is reduced when miR-17-92 is inhibited. CONCLUSIONS: Taken together, our results indicate that VEGF-induced miR-17-92 cluster expression contributes to the angiogenic switch of ECs and participates in the regulation of angiogenesis.
Asunto(s)
Endotelio Vascular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , MicroARNs/biosíntesis , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Endotelio Vascular/efectos de los fármacos , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Ratones Noqueados , MicroARNs/genética , Neovascularización Fisiológica/efectos de los fármacosRESUMEN
MicroRNAs (miRNAs) have emerged as important modulators in development, tissue homeostasis, and diseases. In this issue of Genes & Development, Miyaki and colleagues (pp. 1173-1185) report that miR-140 is involved in the pathogenesis of osteoarthritis by regulating, at least in part, ADAMTS5. Moreover, mice lacking miR-140 are dwarf as a consequence of impaired chondrocyte proliferation. This study is the first in vivo demonstration that miR-140 has a critical and nonredundant role in cartilage development and homeostasis.
Asunto(s)
Silenciador del Gen , MicroARNs/metabolismo , Osteoartritis/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAMTS5 , Animales , Cartílago/crecimiento & desarrollo , Cartílago/metabolismo , Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento/crecimiento & desarrollo , Humanos , Ratones , MicroARNs/genéticaRESUMEN
Endothelial cells (ECs) provide nutrients and oxygen essential for tissue homeostasis. Metabolic imbalances and other environmental stimuli, like cytokines or low shear stress, trigger endothelial inflammation, increase permeability, compromise vascular tone, promote cell proliferation, and ultimately cause cell death. These factors contribute to EC dysfunction, which is crucial in the development of cardiometabolic diseases. microRNAs (miRNAs) are small non-coding RNAs that have important functions in the regulation of ECs. In the present review, we discuss the role of miRNAs in various aspects of EC pathology in cardiometabolic diseases like atherosclerosis, type 2 diabetes, obesity, and the metabolic syndrome, and in complication of those pathologies, like ischemia. We also discuss the potential therapeutic applications of miRNAs in promoting angiogenesis and neovascularization in tissues where the endothelium is damaged in different cardiometabolic diseases. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Cardiopatías/genética , Enfermedades Metabólicas/genética , MicroARNs/genética , Animales , Cardiopatías/metabolismo , Humanos , Metabolismo de los Lípidos/genética , Enfermedades Metabólicas/metabolismoRESUMEN
Notch signalling is a central regulator of differentiation in a variety of organisms and tissue types. Its activity is controlled by the multi-subunit γ-secretase (γSE) complex. Although Notch signalling can play both oncogenic and tumour-suppressor roles in solid tumours, in the haematopoietic system it is exclusively oncogenic, notably in T-cell acute lymphoblastic leukaemia, a disease characterized by Notch1-activating mutations. Here we identify novel somatic-inactivating Notch pathway mutations in a fraction of patients with chronic myelomonocytic leukaemia (CMML). Inactivation of Notch signalling in mouse haematopoietic stem cells (HSCs) results in an aberrant accumulation of granulocyte/monocyte progenitors (GMPs), extramedullary haematopoieisis and the induction of CMML-like disease. Transcriptome analysis revealed that Notch signalling regulates an extensive myelomonocytic-specific gene signature, through the direct suppression of gene transcription by the Notch target Hes1. Our studies identify a novel role for Notch signalling during early haematopoietic stem cell differentiation and suggest that the Notch pathway can play both tumour-promoting and -suppressive roles within the same tissue.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor/fisiología , Leucemia Mielomonocítica Crónica/genética , Leucemia Mielomonocítica Crónica/patología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Células Cultivadas , Perfilación de la Expresión Génica , Silenciador del Gen , Células Progenitoras de Granulocitos y Macrófagos/citología , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Mutación , Receptores Notch/deficiencia , Factor de Transcripción HES-1 , Células Tumorales CultivadasRESUMEN
MicroRNA-149 (miR-149) is located within the first intron of the glypican-1 (GPC1) gene. GPC1 is a low affinity receptor for fibroblast growth factor (FGF2) that enhances FGF2 binding to its receptor (FGFR1), subsequently promoting FGF2-FGFR1 activation and signaling. Using bioinformatic approaches, both GPC1 and FGFR1 were identified and subsequently validated as targets for miR-149 (both the mature strand, miR-149, and the passenger strand, miR-149*) in endothelial cells (ECs). As a consequence of their targeting activity towards GPC1 and FGFR1, both miR-149 and miR-149* regulated FGF2 signaling and FGF2-induced responses in ECs, namely proliferation, migration and cord formation. Moreover, lentiviral overexpression of miR-149 reduced in vivo tumor-induced neovascularization. Importantly, FGF2 transcriptionally stimulated the expression of miR-149 independently of its host gene, therefore assuring the steady state of FGF2-induced responses through the regulation of the GPC1-FGFR1 binary complex in ECs.
Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/fisiología , Glipicanos/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , MicroARNs/fisiología , Neovascularización Fisiológica , Animales , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Carcinoma Pulmonar de Lewis/metabolismo , Células Cultivadas , Expresión Génica , Glipicanos/metabolismo , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Interferencia de ARN , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de SeñalRESUMEN
The hypoxia-inducible factor (Hif)-1α (Hif-1α) and Hif-2α (Epas1) have a critical role in both normal development and cancer. von Hippel Lindau (Vhl) protein, encoded by a tumor suppressor gene, is an E3 ubiquitin ligase that targets Hif-1α and Epas1 to the proteasome for degradation. To better understand the role of Vhl in the biology of mesenchymal cells, we analyzed mutant mice lacking Vhl in mesenchymal progenitors that give rise to the soft tissues that form and surround synovial joints. Loss of Vhl in mesenchymal progenitors of the limb bud caused severe fibrosis of the synovial joints and formation of aggressive masses with histologic features of mesenchymal tumors. Hif-1α and its downstream target connective tissue growth factor were necessary for the development of these tumors, which conversely still developed in the absence of Epas1, but at lower frequency. Human tumors of the soft tissue are a very complex and heterogeneous group of neoplasias. Our novel findings in genetically altered mice suggest that activation of the HIF signaling pathway could be an important pathogenetic event in the development and progression of at least a subset of these tumors.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Fibrosis/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Transducción de Señal , Neoplasias de los Tejidos Blandos/patología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Fibrosis/metabolismo , Fibrosis/prevención & control , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neoplasias de los Tejidos Blandos/metabolismo , Neoplasias de los Tejidos Blandos/prevención & control , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismoRESUMEN
Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. We found that germ-line Akt2-deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bone marrow cells isolated from Akt2(-/-) mice to Ldlr(-/-) mice results in marked reduction of the progression of atherosclerosis compared with Ldlr(-/-) mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2(-/-) macrophages accumulate less cholesterol and have an alternative activated or M2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis.
Asunto(s)
Aterosclerosis/fisiopatología , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Glucemia/metabolismo , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Movimiento Celular , Colesterol/metabolismo , Citocinas/metabolismo , Progresión de la Enfermedad , Inflamación , Insulina/química , Leucocitos/citología , Lípidos/sangre , Lipoproteínas LDL/metabolismo , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Placa Aterosclerótica , Receptores de LDL/genéticaRESUMEN
Adaptation to low oxygen tension (hypoxia) is a critical event during development. The transcription factors Hypoxia Inducible Factor-1α (HIF-1α) and HIF-2α are essential mediators of the homeostatic responses that allow hypoxic cells to survive and differentiate. Von Hippel-Lindau protein (VHL) is the E3 ubiquitin ligase that targets HIFs to the proteasome for degradation in normoxia. We have previously demonstrated that the transcription factor HIF-1α is essential for survival and differentiation of growth plate chondrocytes, whereas HIF-2α is not necessary for fetal growth plate development. We have also shown that VHL is important for endochondral bone development, since loss of VHL in chondrocytes causes severe dwarfism. In this study, in order to expand our understanding of the role of VHL in chondrogenesis, we conditionally deleted VHL in mesenchymal progenitors of the limb bud, i.e. in cells not yet committed to the chondrocyte lineage. Deficiency of VHL in limb bud mesenchyme does not alter the timely differentiation of mesenchymal cells into chondrocytes. However, it causes structural collapse of the cartilaginous growth plate as a result of impaired proliferation, delayed terminal differentiation, and ectopic death of chondrocytes. This phenotype is associated to delayed replacement of cartilage by bone. Notably, loss of HIF-2α fully rescues the late formation of the bone marrow cavity in VHL mutant mice, though it does not affect any other detectable abnormality of the VHL mutant growth plates. Our findings demonstrate that VHL regulates bone morphogenesis as its loss considerably alters size, shape and overall development of the skeletal elements.
Asunto(s)
Células Madre Mesenquimatosas/citología , Osteogénesis/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Condrogénesis/genética , Condrogénesis/fisiología , Placa de Crecimiento/embriología , Placa de Crecimiento/crecimiento & desarrollo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Esbozos de los Miembros/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genéticaRESUMEN
RATIONALE: Foam cell formation because of excessive accumulation of cholesterol by macrophages is a pathological hallmark of atherosclerosis, the major cause of morbidity and mortality in Western societies. Liver X nuclear receptors (LXRs) regulate the expression of the adenosine triphosphate-binding cassette (ABC) transporters, including adenosine triphosphate-binding cassette transporter A1 (ABCA1) and adenosine triphosphate-binding cassette transporter G1 (ABCG1). ABCA1 and ABCG1 facilitate the efflux of cholesterol from macrophages and regulate high-density lipoprotein (HDL) biogenesis. Increasing evidence supports the role of microRNA (miRNAs) in regulating cholesterol metabolism through ABC transporters. OBJECTIVE: We aimed to identify novel miRNAs that regulate cholesterol metabolism in macrophages stimulated with LXR agonists. METHODS AND RESULTS: To map the miRNA expression signature of macrophages stimulated with LXR agonists, we performed an miRNA profiling microarray analysis in primary mouse peritoneal macrophages stimulated with LXR ligands. We report that LXR ligands increase miR-144 expression in macrophages and mouse livers. Overexpression of miR-144 reduces ABCA1 expression and attenuates cholesterol efflux to apolipoproteinA1 in macrophages. Delivery of miR-144 oligonucleotides to mice attenuates ABCA1 expression in the liver, reducing HDL levels. Conversely, silencing of miR-144 in mice increases the expression of ABCA1 and plasma HDL levels. Thus, miR-144 seems to regulate both macrophage cholesterol efflux and HDL biogenesis in the liver. CONCLUSIONS: miR-144 regulates cholesterol metabolism via suppressing ABCA1 expression and modulation of miRNAs may represent a potential therapeutical intervention for treating dyslipidemia and atherosclerotic vascular disease.
Asunto(s)
HDL-Colesterol/sangre , Hepatocitos/metabolismo , Macrófagos/metabolismo , MicroARNs/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Anticolesterolemiantes/farmacología , Apolipoproteína A-I/metabolismo , Células COS , Chlorocebus aethiops , Dieta Alta en Grasa , Perfilación de la Expresión Génica/métodos , Células Hep G2 , Hepatocitos/efectos de los fármacos , Homeostasis , Humanos , Hidrocarburos Fluorados/farmacología , Receptores X del Hígado , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligonucleótidos/metabolismo , Receptores Nucleares Huérfanos/agonistas , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/metabolismo , Sulfonamidas/farmacologíaRESUMEN
Wound healing is a well-regulated but complex process that involves haemostasis, inflammation, proliferation and maturation. Recent reports suggest that microRNAs (miRs) play important roles in dermal wound healing. In fact, miR deregulation has been linked with impaired wound repair. miR-155 has been shown to be induced by inflammatory mediators and plays a central regulatory role in immune responses. We have investigated the potential role of miR-155 in wound healing. By creating punch wounds in the skin of mice, we found an increased expression of miR-155 in wound tissue when compared with healthy skin. Interestingly, analysis of wounds of mice lacking the expression of miR-155 (miR-155(-/-) ) revealed an increased wound closure when compared with wild-type animals. Also, the accelerated wound closing correlated with elevated numbers of macrophages in wounded tissue. Gene expression analysis of wounds tissue and macrophages isolated from miR-155(-/-) mice that were treated with interleukin-4 demonstrated an increased expression of miR-155 targets (BCL6, RhoA and SHIP1) as well as, the finding in inflammatory zone-1 (FIZZ1) gene, when compared with WT mice. Moreover, the up-regulated levels of FIZZ1 in the wound tissue of miR-155(-/-) mice correlated with an increased deposition of type-1 collagens, a phenomenon known to be beneficial in wound closure. Our data indicate that the absence of miR-155 has beneficial effects in the wound healing process.
Asunto(s)
Dermis/metabolismo , Dermis/patología , MicroARNs/fisiología , Cicatrización de Heridas/genética , Animales , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Dermis/lesiones , Humanos , Técnicas para Inmunoenzimas , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific microRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions.
Asunto(s)
Enfermedades Cardiovasculares/terapia , Células Endoteliales , Endotelio Vascular/fisiopatología , Marcación de Gen/métodos , Terapia Genética/métodos , MicroARNs/genética , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Endoteliales/inmunología , Células Endoteliales/patología , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Regulación de la Expresión Génica , Hemodinámica/genética , Hemodinámica/fisiología , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/biosíntesisRESUMEN
Lithium is a nutritional trace element that is also used pharmacologically for the management of bipolar and related psychiatric disorders. Recent studies have shown that lithium supplementation can extend health and lifespan in different animal models. Moreover, nutritional lithium uptake from drinking water was repeatedly found to be positively correlated with human longevity. By analyzing a large observational aging cohort (UK Biobank, n = 501,461 individuals) along with prescription data derived from the National Health Services (NHS), we here find therapeutic supplementation of lithium linked to decreased mortality (p = 0.0017) of individuals diagnosed with affective disorders. Subsequent multivariate survival analyses reveal lithium to be the strongest factor in regards to increased survival effects (hazard ratio = 0.274 [0.119-0.634 CI 95%, p = 0.0023]), corresponding to 3.641 times lower (95% CI 1.577-8.407) chances of dying at a given age for lithium users compared to users of other anti-psychotic drugs. While these results may further support the use of lithium as a geroprotective supplement, it should be noted that doses applied within the UK Biobank/NHS setting require close supervision by qualified medical professionals.
Asunto(s)
Litio , Longevidad , Animales , Humanos , Litio/uso terapéutico , Litio/análisis , Bancos de Muestras Biológicas , Compuestos de Litio/uso terapéutico , Reino UnidoRESUMEN
Introduction: Pituitary adenomas (PAs) are common, usually benign tumors of the anterior pituitary gland which, for the most part, have no known genetic cause. PAs are associated with major clinical effects due to hormonal dysregulation and tumoral impingement on vital brain structures. PAM encodes a multifunctional protein responsible for the essential C-terminal amidation of secreted peptides. Methods: Following the identification of a loss-of-function variant (p.Arg703Gln) in the peptidylglycine a-amidating monooxygenase (PAM) gene in a family with pituitary gigantism, we investigated 299 individuals with sporadic PAs and 17 familial isolated PA kindreds for PAM variants. Genetic screening was performed by germline and tumor sequencing and germline copy number variation (CNV) analysis. Results: In germline DNA, we detected seven heterozygous, likely pathogenic missense, truncating, and regulatory SNVs. These SNVs were found in sporadic subjects with growth hormone excess (p.Gly552Arg and p.Phe759Ser), pediatric Cushing disease (c.-133T>C and p.His778fs), or different types of PAs (c.-361G>A, p.Ser539Trp, and p.Asp563Gly). The SNVs were functionally tested in vitro for protein expression and trafficking by Western blotting, splicing by minigene assays, and amidation activity in cell lysates and serum samples. These analyses confirmed a deleterious effect on protein expression and/or function. By interrogating 200,000 exomes from the UK Biobank, we confirmed a significant association of the PAM gene and rare PAM SNVs with diagnoses linked to pituitary gland hyperfunction. Conclusion: The identification of PAM as a candidate gene associated with pituitary hypersecretion opens the possibility of developing novel therapeutics based on altering PAM function.
Asunto(s)
Enfermedades de la Hipófisis , Neoplasias Hipofisarias , Niño , Humanos , Variaciones en el Número de Copia de ADN , Hipófisis , Neoplasias Hipofisarias/genética , Oxigenasas de Función MixtaRESUMEN
Pituitary adenomas (PAs) are common, usually benign tumors of the anterior pituitary gland which, for the most part, have no known genetic cause. PAs are associated with major clinical effects due to hormonal dysregulation and tumoral impingement on vital brain structures. Following the identification of a loss-of-function variant (p.Arg703Gln) in the PAM gene in a family with pituitary gigantism, we investigated 299 individuals with sporadic PAs and 17 familial isolated pituitary adenomas kindreds for PAM variants. PAM encodes a multifunctional protein responsible for the essential C-terminal amidation of secreted peptides. Genetic screening was performed by germline and tumor sequencing and germline copy number variation (CNV) analysis. No germline CNVs or somatic single nucleotide variants (SNVs) were identified. We detected seven likely pathogenic heterozygous missense, truncating, and regulatory SNVs. These SNVs were found in sporadic subjects with GH excess (p.Gly552Arg and p.Phe759Ser), pediatric Cushing disease (c.-133T>C and p.His778fs), or with different types of PAs (c.-361G>A, p.Ser539Trp, and p.Asp563Gly). The SNVs were functionally tested in vitro for protein expression and trafficking by Western blotting, for splicing by minigene assays, and for amidation activity in cell lysates and serum samples. These analyses confirmed a deleterious effect on protein expression and/or function. By interrogating 200,000 exomes from the UK Biobank, we confirmed a significant association of the PAM gene and rare PAM SNVs to diagnoses linked to pituitary gland hyperfunction. Identification of PAM as a candidate gene associated with pituitary hypersecretion opens the possibility of developing novel therapeutics based on altering PAM function.
RESUMEN
Patients with type 2 diabetes vary in their response to currently available therapeutic agents (including GLP-1 receptor agonists) leading to suboptimal glycemic control and increased risk of complications. We show that human carriers of hypomorphic T2D-risk alleles in the gene encoding peptidyl-glycine alpha-amidating monooxygenase (PAM), as well as Pam-knockout mice, display increased resistance to GLP-1 in vivo. Pam inactivation in mice leads to reduced gastric GLP-1R expression and faster gastric emptying: this persists during GLP-1R agonist treatment and is rescued when GLP-1R activity is antagonized, indicating resistance to GLP-1's gastric slowing properties. Meta-analysis of human data from studies examining GLP-1R agonist response (including RCTs) reveals a relative loss of 44% and 20% of glucose lowering (measured by glycated hemoglobin) in individuals with hypomorphic PAM alleles p.S539W and p.D536G treated with GLP-1R agonist. Genetic variation in PAM has effects on incretin signaling that alters response to medication used commonly for treatment of T2D.