Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(13): 136801, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613274

RESUMEN

Recent works on electric bubbles (including the experimental demonstration of electric skyrmions) constitute a breakthrough akin to the discovery of magnetic skyrmions some 15 years ago. So far research has focused on obtaining and visualizing these objects, which often appear to be immobile (pinned) in experiments. Thus, critical aspects of magnetic skyrmions-e.g., their quasiparticle nature, Brownian motion-remain unexplored (unproven) for electric bubbles. Here we use predictive atomistic simulations to investigate the basic dynamical properties of these objects in pinning-free model systems. We show that it is possible to find regimes where the electric bubbles can present long lifetimes (∼ns) despite being relatively small (diameter <2 nm). Additionally, we find that they can display stochastic dynamics with large and highly tunable diffusion constants. We thus establish the quasiparticle nature of electric bubbles and put them forward for the physical effects and applications (e.g., in token-based probabilistic computing) considered for magnetic skyrmions.

2.
Nat Mater ; 21(11): 1252-1257, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36008605

RESUMEN

Ferroelectrics subject to suitable electric boundary conditions present a steady negative capacitance response1,2. When the ferroelectric is in a heterostructure, this behaviour yields a voltage amplification in the other elements, which experience a potential difference larger than the one applied, holding promise for low-power electronics3. So far research has focused on verifying this effect and little is known about how to optimize it. Here, we describe an electrostatic theory of ferroelectric/dielectric superlattices, convenient model systems4,5, and show the relationship between the negative permittivity of the ferroelectric layers and the voltage amplification in the dielectric ones. Then, we run simulations of PbTiO3/SrTiO3 superlattices to reveal the factors most strongly affecting the amplification. In particular, we find that giant effects (up to tenfold increases) can be obtained when PbTiO3 is brought close to the so-called 'incipient ferroelectric' state.


Asunto(s)
Electrónica , Electricidad Estática
3.
Phys Rev Lett ; 124(9): 097603, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32202901

RESUMEN

Model materials are precious test cases for elementary theories and provide building blocks for the understanding of more complex cases. Here, we describe the lattice dynamics of the structural phase transition in francisite Cu_{3}Bi(SeO_{3})_{2}O_{2}Cl at 115 K and show that it provides a rare archetype of a transition driven by a soft antipolar phonon mode. In the high-symmetry phase at high temperatures, the soft mode is found at (0,0,0.5) at the Brillouin zone boundary and is measured by inelastic x-ray scattering and thermal diffuse scattering. In the low-symmetry phase, this soft-mode is folded back onto the center of the Brillouin zone as a result of the doubling of the unit cell, and appears as a fully symmetric mode that can be tracked by Raman spectroscopy. On both sides of the transition, the mode energy squared follows a linear behavior over a large temperature range. First-principles calculations reveal that, surprisingly, the flat phonon band calculated for the high-symmetry phase seems incompatible with the displacive character found experimentally. We discuss this unusual behavior in the context of an ideal Kittel model of an antiferroelectric transition.

4.
Nano Lett ; 15(6): 3840-4, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-25955766

RESUMEN

Via density functional theory based calculations we show that self-doping of the surface Dirac cones in three-dimensional Bi2X3 (X = Se, Te) topological insulators can be tuned by controlling the sequence of stacking defects in the crystal. Twin boundaries inside the Bi2X3 bulk drive either n- or p-type self-doping of the (0001) topological surface states, depending on the precise orientation of the twin. The surface doping may achieve values up to 300 meV and can be controlled by the number of defects and their relative position with respect to the surface. Its origin relies on the spontaneous polarization generated by the dipole moments associated with the lattice defects. Our findings open the route to the fabrication of Bi2X3 surfaces with tailored surface charge and spin densities in the absence of external electric fields. In addition, in a thin film geometry two-dimensional electron and hole Dirac gases with the same spin-helicity coexist at opposite surfaces.


Asunto(s)
Bismuto/química , Electrones , Compuestos de Selenio/química , Telurio/química
5.
Nat Commun ; 15(1): 860, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287021

RESUMEN

HfO2-based thin films hold huge promise for integrated devices as they show full compatibility with semiconductor technologies and robust ferroelectric properties at nanometer scale. While their polarization switching behavior has been widely investigated, their electromechanical response received much less attention so far. Here, we demonstrate that piezoelectricity in Hf0.5Zr0.5O2 ferroelectric capacitors is not an invariable property but, in fact, can be intrinsically changed by electrical field cycling. Hf0.5Zr0.5O2 capacitors subjected to ac cycling undergo a continuous transition from a positive effective piezoelectric coefficient d33 in the pristine state to a fully inverted negative d33 state, while, in parallel, the polarization monotonically increases. Not only can the sign of d33 be uniformly inverted in the whole capacitor volume, but also, with proper ac training, the net effective piezoresponse can be nullified while the polarization is kept fully switchable. Moreover, the local piezoresponse force microscopy signal also gradually goes through the zero value upon ac cycling. Density functional theory calculations suggest that the observed behavior is a result of a structural transformation from a weakly-developed polar orthorhombic phase towards a well-developed polar orthorhombic phase. The calculations also suggest the possible occurrence of a non-piezoelectric ferroelectric Hf0.5Zr0.5O2. Our experimental findings create an unprecedented potential for tuning the electromechanical functionality of ferroelectric HfO2-based devices.

6.
Sci Adv ; 8(31): eabn4880, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35921413

RESUMEN

The polarization response of antiferroelectrics to electric fields is such that the materials can store large energy densities, which makes them promising candidates for energy storage applications in pulsed-power technologies. However, relatively few materials of this kind are known. Here, we consider ferroelectric/paraelectric superlattices as artificial electrostatically engineered antiferroelectrics. Specifically, using high-throughput second-principles calculations, we engineer PbTiO3/SrTiO3 superlattices to optimize their energy storage performance at room temperature (to maximize density and release efficiency) with respect to different design variables (layer thicknesses, epitaxial conditions, and stiffness of the dielectric layer). We obtain results competitive with the state-of-the-art antiferroelectric capacitors and reveal the mechanisms responsible for the optimal properties.

7.
ACS Appl Energy Mater ; 5(9): 11835-11843, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36185812

RESUMEN

The anomalous Nernst effect (ANE) is a thermomagnetic phenomenon with potential applications in thermal energy harvesting. While many recent works studied the approaches to increase the ANE coefficient of materials, relatively little effort was devoted to increasing the power supplied by the effect. Here, we demonstrate a nanofabricated device with record power density generated by the ANE. To accomplish this, we fabricate micrometer-sized devices in which the thermal gradient is 3 orders of magnitude higher than conventional macroscopic devices. In addition, we use Co/Pt multilayers, a system characterized by a high ANE thermopower (∼1 µV/K), low electrical resistivity, and perpendicular magnetic anisotropy. These innovations allow us to obtain power densities of around 13 ± 2 W/cm3. We believe that this design may find uses in harvesting wasted energy, e.g., in electronic devices.

8.
Adv Mater ; 34(3): e2105778, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34676925

RESUMEN

Interfacial thermal transport plays a prominent role in the thermal management of nanoscale objects and is of fundamental importance for basic research and nanodevices. At metal/insulator interfaces, a configuration commonly found in electronic devices, heat transport strongly depends upon the effective energy transfer from thermalized electrons in the metal to the phonons in the insulator. However, the mechanism of interfacial electron-phonon coupling and thermal transport at metal/insulator interfaces is not well understood. Here, the observation of a substantial enhancement of the interfacial thermal resistance and the important role of surface charges at the metal/ferroelectric interface in an Al/BiFeO3 membrane are reported. By applying uniaxial strain, the interfacial thermal resistance can be varied substantially (up to an order of magnitude), which is attributed to the renormalized interfacial electron-phonon coupling caused by the charge redistribution at the interface due to the polarization rotation. These results imply that surface charges at a metal/insulator interface can substantially enhance the interfacial electron-phonon-mediated thermal coupling, providing a new route to optimize the thermal transport performance in next-generation nanodevices, power electronics, and thermal logic devices.

9.
Nat Commun ; 12(1): 7301, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911930

RESUMEN

Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.

10.
ACS Appl Mater Interfaces ; 13(43): 51383-51392, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34694130

RESUMEN

Zirconia- and hafnia-based thin films have attracted tremendous attention in the past decade because of their unexpected ferroelectric behavior at the nanoscale, which enables the downscaling of ferroelectric devices. The present work reports an unprecedented ferroelectric rhombohedral phase of ZrO2 that can be achieved in thin films grown directly on (111)-Nb:SrTiO3 substrates by ion-beam sputtering. Structural and ferroelectric characterizations reveal (111)-oriented ZrO2 films under epitaxial compressive strain exhibiting switchable ferroelectric polarization of about 20.2 µC/cm2 with a coercive field of 1.5 MV/cm. Moreover, the time-dependent polarization reversal characteristics of Nb:SrTiO3/ZrO2/Au film capacitors exhibit typical bell-shaped curve features associated with the ferroelectric domain reversal and agree well with the nucleation limited switching (NLS) model. The polarization-electric field hysteresis loops point to an activation field comparable to the coercive field. Interestingly, the studied films show ferroelectric behavior per se, without the need to apply the wake-up cycle found in the orthorhombic phase of ZrO2. Overall, the rhombohedral ferroelectric ZrO2 films present technological advantages over the previously studied zirconia- and hafnia-based thin films and may be attractive for nanoscale ferroelectric devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA