Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 248: 118242, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242419

RESUMEN

Exposure to ultrafine particles (UFPs) has been associated with multiple adverse health effects. Inhaled UFPs could reach the gastrointestinal tract and influence the composition of the gut microbiome. We have previously shown that oral ingestion of UFPs alters the gut microbiome and promotes intestinal inflammation in hyperlipidemic Ldlr-/- mice. Particulate matter (PM)2.5 inhalation studies have also demonstrated microbiome shifts in normolipidemic C57BL/6 mice. However, it is not known whether changes in microbiome precede or follow inflammatory effects in the intestinal mucosa. We hypothesized that inhaled UFPs modulate the gut microbiome prior to the development of intestinal inflammation. We studied the effects of UFP inhalation on the gut microbiome and intestinal mucosa in two hyperlipidemic mouse models (ApoE-/- mice and Ldlr-/- mice) and normolipidemic C57BL/6 mice. Mice were exposed to PM in the ultrafine-size range by inhalation for 6 h a day, 3 times a week for 10 weeks at a concentration of 300-350 µg/m3.16S rRNA gene sequencing was performed to characterize sequential changes in the fecal microbiome during exposures, and changes in the intestinal microbiome at the end. PM exposure led to progressive differentiation of the microbiota over time, associated with increased fecal microbial richness and evenness, altered microbial composition, and differentially abundant microbes by week 10 depending on the mouse model. Cross-sectional analysis of the small intestinal microbiome at week 10 showed significant changes in α-diversity, ß-diversity, and abundances of individual microbial taxa in the two hyperlipidemic models. These alterations of the intestinal microbiome were not accompanied, and therefore could not be caused, by increased intestinal inflammation as determined by histological analysis of small and large intestine, cytokine gene expression, and levels of fecal lipocalin. In conclusion, 10-week inhalation exposures to UFPs induced taxonomic changes in the microbiome of various animal models in the absence of intestinal inflammation.


Asunto(s)
Contaminantes Atmosféricos , Microbioma Gastrointestinal , Ratones , Animales , Material Particulado/análisis , Contaminantes Atmosféricos/toxicidad , Exposición por Inhalación/análisis , ARN Ribosómico 16S , Estudios Transversales , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Inflamación/inducido químicamente
3.
Environ Res ; 212(Pt D): 113498, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35613629

RESUMEN

Exposure to polycyclic aromatic hydrocarbons (PAHs) has been associated with systemic inflammation, yet what mechanisms regulate PAHs' inflammatory effects are less understood. This study evaluated the change of arachidonic acid (ARA) metabolites and inflammatory biomarkers in response to increased exposure to PAHs among 26 non-smoking healthy travelers from Los Angeles to Beijing. Traveling from Los Angeles to Beijing significantly increased urinary metabolites of dibenzofuran (800%), fluorene (568%), phenanthrene (277%), and pyrene (176%), accompanied with increased C-reactive protein, fibrinogen, IL-8, and IL-10, and decreased MCP-1, sCD40L, and sCD62P levels in the blood. Meanwhile, the travel increased the levels of ARA lipoxygenase metabolites that were positively associated with a panel of pro-inflammatory biomarkers. Concentrations of cytochrome P450 metabolite were also increased in Beijing and were negatively associated with sCD62P levels. In contrast, concentrations of ARA cyclooxygenase metabolites were decreased in Beijing and were negatively associated with anti-inflammatory IL-10 levels. Changes in both inflammatory biomarkers and ARA metabolites were reversed 4-7 weeks after participants returned to Los Angeles and were associated with urinary PAH metabolites, but not with other exposures such as secondhand smoke, stress, or diet. These results suggested possible roles of ARA metabolic alteration in PAHs-associated inflammatory effects.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Ácido Araquidónico , Biomarcadores/orina , Monitoreo del Ambiente/métodos , Humanos , Interleucina-10 , Hidrocarburos Policíclicos Aromáticos/orina
4.
Environ Sci Technol ; 55(8): 5097-5105, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33683876

RESUMEN

Emerging epidemiological evidence has associated exposure to polycyclic aromatic hydrocarbons (PAHs) with chronic diseases including cardiometabolic diseases and neurodegeneration. However, little information is available about their subacute effects, which may accumulate over years and contribute to chronic disease development. To fill this knowledge gap, we designed a natural experiment among 26 healthy young adults who were exposed to elevated PAHs for 10 weeks after traveling from Los Angeles to Beijing in 2014 and 2015. Serum was collected before, during, and after the trip for metabolomics analysis. We identified 50 metabolites that significantly changed 6-8 weeks after the travel to Beijing (FDR < 5%). The network analysis revealed two main independent modules. Module 1 was allocated to oxidative homeostasis-related response and module 2 to delayed enzymatic deinduction response. Remarkably, the module 1 metabolites were recovered 4-7 weeks after participants' return, while the module 2 metabolites were not. Urinary hydroxylated PAHs were significantly associated with metabolites from both modules, while PAH carboxylic acids, likely metabolites of alkylated PAHs, were only associated with antioxidation-related metabolites. These results suggested differential subacute effects of unsubstituted and alkylated PAHs. Further studies are warranted to elucidate the role of the reversibility of metabolite changes in adverse health effects of PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Beijing , Ácidos Carboxílicos , Humanos , Los Angeles , Metabolómica , Hidrocarburos Policíclicos Aromáticos/análisis , Adulto Joven
5.
Circulation ; 140(24): 1995-2004, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31744317

RESUMEN

BACKGROUND: Exposure to air pollution increases cardiovascular morbidity and mortality. Preventing chronic cardiovascular diseases caused by air pollution relies on detecting the early effects of pollutants on the risk of cardiovascular disease development, which is limited by the lack of sensitive biomarkers. We have previously identified promising biomarkers in experimental animals but comparable evidence in humans is lacking. METHODS: Air pollution is substantially worse in Beijing than in Los Angeles. We collected urine and blood samples from 26 nonsmoking, healthy adult residents of Los Angeles (mean age, 23.8 years; 14 women) before, during, and after spending 10 weeks in Beijing during the summers of 2014 and 2015. We assessed a panel of circulating biomarkers indicative of lipid peroxidation and inflammation. Personal exposure to polycyclic aromatic hydrocarbons (PAHs), a group of combustion-originated air pollutants, was assessed by urinary PAH metabolite levels. RESULTS: Urinary concentrations of 4 PAH metabolites were 176% (95% CI, 103% to 276%) to 800% (95% CI, 509% to 1780%) greater in Beijing than in Los Angeles. Concentrations of 6 lipid peroxidation biomarkers were also increased in Beijing, among which 5-, 12-, and 15-hydroxyeicosatetraenoic acid and 9- and 13-hydroxyoctadecadienoic acid levels reached statistical significance (false discovery rate <5%), but not 8-isoprostane (20.8%; 95% CI, -5.0% to 53.6%). The antioxidative activities of paraoxonase (-9.8%; 95% CI, -14.0% to -5.3%) and arylesterase (-14.5%; 95% CI, -22.3% to -5.8%) were lower and proinflammatory C-reactive protein (101%; 95% CI, 3.3% to 291%) and fibrinogen (48.3%; 95% CI, 4.9% to 110%) concentrations were higher in Beijing. Changes in all these biomarkers were reversed, at least partially, after study participants returned to Los Angeles. Changes in most outcomes were associated with urinary PAH metabolites (P<0.05). CONCLUSIONS: Traveling from a less-polluted to a more-polluted city induces systemic pro-oxidative and proinflammatory effects. Changes in the levels of 5-, 12-, and 15-hydroxyeicosatetraenoic acid and 9- and 13-hydroxyoctadecadienoic acid as well as paraoxonase and arylesterase activities in the blood, in association with exposures to PAH metabolites, might have important implications in preventive medicine as indicators of increased cardiovascular risk caused by air pollution exposure.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Biomarcadores/sangre , Inflamación/etiología , Material Particulado/análisis , Adulto , Beijing , Proteína C-Reactiva/metabolismo , Exposición a Riesgos Ambientales/análisis , Femenino , Humanos , Los Angeles , Masculino , Estrés Oxidativo/fisiología , Hidrocarburos Policíclicos Aromáticos/análisis , Adulto Joven
6.
J Transl Med ; 18(1): 379, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028369

RESUMEN

BACKGROUND: Electronic cigarette use is on the rise despite a number of reports linking electronic cigarettes with adverse health outcomes. Recent studies have suggested that alterations in lipid signaling may be one mechanism by which electronic cigarettes contribute to lung pulmonary function. Vitamin E acetate, for example, is synthetic form of Vitamin E transported via lipids, found to be associated with electronic cigarette associated lung injury. Lipids are absolutely critical for normal lung physiology and perturbations in a number of lipid pathways have been associated with respiratory illness. Is it conceivable that electronic cigarette use even in seemingly healthy cohorts are associated with alterations in lipid pathways? METHODS: To investigate quantitative alterations in the plasma lipidome associated with electronic cigarette use in healthy we obtained plasma samples from 119 male and female participants with who were either: (1) chronic tobacco cigarette (TC) smokers (> 12 months of self-reported TC use), (2) chronic Electronic cigarette (EC) users (> 12 months of self-reported EC use), or (3) non-users. We measured quantitative lipid species across different lipid sub-classes from plasma samples using the Sciex Lipidyzer. RESULTS: We found that male and female tobacco and electronic cigarette users had distinct lipidome signatures across a number of lipid species although the vast majority of lipids were unchanged when compared to non-users. Intriguingly, we found that female but not male electronic cigarette users had lower levels of plasmalogens, critical glycerophospholipids secreted by alveoli and required for normal surfactant function. CONCLUSIONS: In summary, our study does not reveal striking changes associated with electronic cigarette use but we observed sex-specific changes in lipids known to be critical for lung function.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Productos de Tabaco , Vapeo , Femenino , Humanos , Lípidos , Masculino , Autoinforme , Vapeo/efectos adversos
7.
Arterioscler Thromb Vasc Biol ; 39(9): 1776-1786, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31340670

RESUMEN

OBJECTIVE: Air pollution is associated with increased cardiovascular morbidity and mortality, as well as dyslipidemia and metabolic syndrome. Our goal was to dissect the mechanisms involved. Approach and Results: We assessed the effects of exposure to air pollution on lipid metabolism in mice through assessment of plasma lipids and lipoproteins, oxidized fatty acids 9-HODE (9-hydroxyoctadecadienoic) and 13-HODE (13-hydroxyoctadecadienoic), lipid, and carbohydrate metabolism. Findings were corroborated, and mechanisms were further assessed in HepG2 hepatocytes in culture. ApoE knockout mice exposed to inhaled diesel exhaust (DE, 6 h/d, 5 days/wk for 16 weeks) exhibited elevated plasma cholesterol and triglyceride levels, increased hepatic triglyceride content, and higher hepatic levels of 9-HODE and 13-HODE, as compared to control mice exposed to filtered air. A direct effect of DE exposure on hepatocytes was demonstrated by treatment of HepG2 cells with a methanol extract of DE particles followed by loading with oleic acid. As observed in vivo, this led to increased triglyceride content and significant downregulation of ACAD9 mRNA expression. Treatment of HepG2 cells with DE particles and oleic acid did not alter de novo lipogenesis but inhibited total, mitochondrial, and ATP-linked oxygen consumption rate, indicative of mitochondrial dysfunction. Treatment of isolated mitochondria, prepared from mouse liver, with DE particles and oleic acid also inhibited mitochondrial complex activity and ß-oxidation. CONCLUSIONS: DE exposure leads to dyslipidemia and liver steatosis in ApoE knockout mice, likely due to mitochondrial dysfunction and decreased lipid catabolism.


Asunto(s)
Hígado Graso/inducido químicamente , Hiperlipidemias/inducido químicamente , Mitocondrias/metabolismo , Emisiones de Vehículos/toxicidad , Animales , Células Hep G2 , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Triglicéridos/metabolismo
8.
Am J Transplant ; 19(2): 356-367, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30059195

RESUMEN

By documenting potent antioxidative and anti-inflammatory functions, preclinical studies encourage heme oxygenase-1 (HO-1)-inducing regimens in clinical orthotopic liver transplantation (OLT). We aimed to determine the importance of recipient-derived HO-1 in murine and human OLTs. Hepatic biopsies from 51 OLT patients were screened for HO-1 expression (Western blots) prior to put-in (basal) and post reperfusion (stressed) and correlated with the hepatocellular function. In parallel, livers from HO-1 proficient mice (WT; C57/BL6), subjected to ex vivo cold storage (18 hour), were transplanted to syngeneic myeloid HO-1 deficient (mHO-1 KO) or FLOX (control) hosts, and sampled postreperfusion (6 hour). In human OLT, posttransplant but not pretransplant HO-1 expression correlated negatively with ALT levels (P = .0178). High posttransplant but not pretransplant HO-1 expression trended with improved OLT survival. Compared with controls, livers transplanted into mHO-1 KO recipient mice had decreased HO-1 levels, exacerbated hepatic damage/frequency of TUNEL+ cells, increased mRNA levels coding for TNFα/CXCL1/CXCL2/CXCL10, higher frequency of Ly6G+/4HN+ neutrophils; and enhanced MPO activity. Peritoneal neutrophils from mHO-1 KO mice exhibited higher CellRox+ ratio and increased TNFα/CXCL1/CXCL2/CXCL10 expression. By demonstrating the importance of posttransplant recipient HO-1 phenotype in hepatic macrophage/neutrophil regulation and function, this translational study identifies recipient HO-1 inducibility as a novel biomarker of ischemic stress resistance in OLT.


Asunto(s)
Hemo-Oxigenasa 1/metabolismo , Trasplante de Hígado/métodos , Hígado/patología , Macrófagos/metabolismo , Neutrófilos/inmunología , Daño por Reperfusión/prevención & control , Animales , Apoptosis , Humanos , Hígado/inmunología , Hígado/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Daño por Reperfusión/inmunología , Daño por Reperfusión/metabolismo , Transducción de Señal
9.
Arch Biochem Biophys ; 678: 108116, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31568751

RESUMEN

Exposure to ambient particulate matter has been shown to promote a variety of disorders, including cardiovascular diseases predominantly of ischemic etiology. However, the mechanisms linking inhaled particulates with systemic vascular effects, resulting in worsened atherosclerosis, are not well defined. We assessed the potential role of macrophages in translating these effects by analyzing gene expression patterns in response to diesel exhaust particles (DEP) at the average cell level, using Affymetrix microarrays in peritoneal macrophages in culture (in vitro), and at the individual cell level, using single-cell RNA sequencing (scRNA-seq) in alveolar macrophages collected from exposed mice (in vivo). Peritoneal macrophages were harvested from C57BL/6J mice and treated with 25 µg/mL of a DEP methanol extract (DEPe). These cells exhibited significant (FDR < 0.05) differential expression of a large number of genes and enrichment in pathways, especially engaged in immune responses and antioxidant defense. DEPe led to marked upregulation of heme oxygenase 1 (Hmox1), the most significantly upregulated gene (FDR = 1.75E-06), and several other antioxidant genes. For the in vivo work, C57BL/6J mice were subjected to oropharyngeal aspiration of 200 µg of whole DEP. The gene expression profiles of the alveolar macrophages harvested from these mice were analyzed at the single-cell level using scRNA-seq, which showed significant dysregulation of a broad number of genes enriched in immune system pathways as well, but with a large heterogeneity in how individual alveolar macrophages responded to DEP exposures. Altogether, DEP pollutants dysregulated immunological pathways in macrophages that may mediate the development of pulmonary and systemic vascular effects.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Citoplasmático Pequeño/genética , RNA-Seq , Emisiones de Vehículos/toxicidad , Animales , Antioxidantes/metabolismo , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Macrófagos/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
10.
J Hepatol ; 67(6): 1232-1242, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28842295

RESUMEN

BACKGROUND & AIMS: Hepatic ischemia-reperfusion injury (IRI), characterized by exogenous antigen-independent local inflammation and hepatocellular death, represents a risk factor for acute and chronic rejection in liver transplantation. We aimed to investigate the molecular communication involved in the mechanism of liver IRI. METHODS: We analyzed human liver transplants, primary murine macrophage cell cultures and IR-stressed livers in myeloid-specific heme oxygenase-1 (HO-1) gene mutant mice, for anti-inflammatory and cytoprotective functions of macrophage-specific HO-1/SIRT1 (sirtuin 1)/p53 (tumor suppressor protein) signaling. RESULTS: Decreased HO-1 expression in human post-reperfusion liver transplant biopsies correlated with a deterioration in hepatocellular function (serum ALT; p<0.05) and inferior patient survival (p<0.05). In the low HO-1 liver transplant biopsy group, SIRT1/Arf (alternative reading frame)/p53/MDM2 (murine double minute 2) expression levels decreased (p<0.05) while cleaved caspase 3 and frequency of TUNEL+cells simultaneously increased (p<0.05). Immunofluorescence showed macrophages were the principal source of HO-1 in human and mouse IR-stressed livers. In vitro macrophage cultures revealed that HO-1 induction positively regulated SIRT1 signaling, whereas SIRT1-induced Arf inhibited ubiquitinating activity of MDM2 against p53, which in turn attenuated macrophage activation. In a murine model of hepatic warm IRI, myeloid-specific HO-1 deletion lacked SIRT1/p53, exacerbated liver inflammation and IR-hepatocellular death, whereas adjunctive SIRT1 activation restored p53 signaling and rescued livers from IR-damage. CONCLUSION: This bench-to-bedside study identifies a new class of macrophages activated via the HO-1-SIRT1-p53 signaling axis in the mechanism of hepatic sterile inflammation. This mechanism could be a target for novel therapeutic strategies in liver transplant recipients. LAY SUMMARY: Post-transplant low macrophage HO-1 expression in human liver transplants correlates with reduced hepatocellular function and survival. HO-1 regulates macrophage activation via the SIRT1-p53 signaling network and regulates hepatocellular death in liver ischemia-reperfusion injury. Thus targeting this pathway in liver transplant recipients could be of therapeutic benefit.


Asunto(s)
Hemo-Oxigenasa 1/fisiología , Inflamación/etiología , Hígado/irrigación sanguínea , Macrófagos/fisiología , Daño por Reperfusión/etiología , Sirtuina 1/fisiología , Proteína p53 Supresora de Tumor/fisiología , Animales , Hemo-Oxigenasa 1/análisis , Humanos , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL
11.
Environ Sci Technol ; 50(7): 3738-45, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-26913796

RESUMEN

Air pollution is among the top threats to human health in China. As air toxicants, polycyclic aromatic hydrocarbons (PAHs) could bring significant risks to population; however, the exposure to PAHs in China and its health impact are not fully understood. In 2012, a summer exchange program allowed 10 students to travel from Los Angeles to Beijing and stay there for 10 weeks. Based on the program, this study investigated the difference in urinary concentration of 12 hydroxylated-PAHs (Σ12OH-PAHs) and malondialdehyde (MDA) between the two cities. The median concentration of Σ12OH-PAHs in Beijing (14.1 µg g(-1) creatinine) was significantly higher than that in Los Angeles (5.78 µg g(-1) creatinine), indicating a higher exposure in Beijing. The ratios of homogeneous OH-PAHs (e.g., 1-/2-OH-NAP) changed significantly between the two cities (p < 0.01), which might suggest a potential alteration in metabolism subsequent to exposure. A significant association between Σ12OH-PAHs and MDA (p < 0.01) was observed, with the association varying between the two cities. This study suggests that exposure to PAHs might be linked to metabolism alteration and calls for future studies to investigate the role this possible alteration played in the health effects of PAHs exposure.


Asunto(s)
Contaminantes Atmosféricos/orina , Biomarcadores/orina , Exposición a Riesgos Ambientales/análisis , Peroxidación de Lípido/fisiología , Hidrocarburos Policíclicos Aromáticos/orina , Adulto , Beijing , Biomarcadores/metabolismo , Femenino , Humanos , Los Angeles , Masculino , Malondialdehído/orina
12.
Part Fibre Toxicol ; 13(1): 26, 2016 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-27221567

RESUMEN

BACKGROUND: Exposures to ambient particulate matter (PM) are associated with increased morbidity and mortality. PM2.5 (<2.5 µm) and ozone exposures have been shown to associate with carotid intima media thickness in humans. Animal studies support a causal relationship between air pollution and atherosclerosis and identified adverse PM effects on HDL functionality. We aimed to determine whether brief exposures to PM2.5 and/or ozone could induce effects on HDL anti-oxidant and anti-inflammatory capacity in humans. METHODS: Subjects were exposed to fine concentrated ambient fine particles (CAP) with PM2.5 targeted at 150 µg/m(3), ozone targeted at 240 µg/m(3) (120 ppb), PM2.5 plus ozone targeted at similar concentrations, and filtered air (FA) for 2 h, on 4 different occasions, at least two weeks apart, in a randomized, crossover study. Blood was obtained before exposures (baseline), 1 h after and 20 h after exposures. Plasma HDL anti-oxidant/anti-inflammatory capacity and paraoxonase activity were determined. HDL anti-oxidant/anti-inflammatory capacity was assessed by a cell-free fluorescent assay and expressed in units of a HDL oxidant index (HOI). Changes in HOI (ΔHOI) were calculated as the difference in HOI from baseline to 1 h after or 20 h after exposures. RESULTS: There was a trend towards bigger ΔHOI between PM2.5 and FA 1 h after exposures (p = 0.18) but not 20 h after. This trend became significant (p <0.05) when baseline HOI was lower (<1.5 or <2.0), indicating decreased HDL anti-oxidant/anti-inflammatory capacity shortly after the exposures. There were no significant effects of ozone alone or in combination with PM2.5 on the change in HOI at both time points. The change in HOI due to PM2.5 showed a positive trend with particle mass concentration (p = 0.078) and significantly associated with the slope of systolic blood pressure during exposures (p = 0.005). CONCLUSIONS: Brief exposures to concentrated PM2.5 elicited swift effects on HDL anti-oxidant/anti-inflammatory functionality, which could indicate a potential mechanism for how particulate air pollution induces harmful cardiovascular effects.


Asunto(s)
Contaminación del Aire/efectos adversos , Enfermedades Cardiovasculares/etiología , Lipoproteínas HDL/sangre , Modelos Biológicos , Ozono/toxicidad , Material Particulado/toxicidad , Salud Urbana , Adulto , Contaminantes Atmosféricos/química , Contaminantes Atmosféricos/toxicidad , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/inmunología , Estudios de Cohortes , Estudios Cruzados , Femenino , Humanos , Exposición por Inhalación/efectos adversos , Masculino , Oxidantes/química , Oxidantes/toxicidad , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Material Particulado/química , Riesgo , Método Simple Ciego , Adulto Joven
13.
Toxicol Appl Pharmacol ; 284(3): 281-291, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25620054

RESUMEN

Diesel exhaust particles (DEPs) are a major component of diesel emissions, responsible for a large portion of their toxicity. In this study, we examined the toxic effects of DEPs on endothelial cells and the role of DEP-induced heme oxygenase-1 (HO-1) expression. Human microvascular endothelial cells (HMECs) were treated with an organic extract of DEPs from an automobile engine (A-DEP) or a forklift engine (F-DEP) for 1 and 4h. ROS generation, cell viability, lactate dehydrogenase leakage, expression of HO-1, inflammatory genes, cell adhesion molecules and unfolded protein respone (UPR) gene were assessed. HO-1 expression and/or activity were inhibited by siRNA or tin protoporphyrin (Sn PPIX) and enhanced by an expression plasmid or cobalt protoporphyrin (CoPPIX). Exposure to 25µg/ml of A-DEP and F-DEP significantly induced ROS production, cellular toxicity and greater levels of inflammatory and cellular adhesion molecules but to a different degree. Inhibition of HO-1 enzymatic activity with SnPPIX and silencing of the HO-1 gene by siRNA enhanced DEP-induced ROS production, further decreased cell viability and increased expression of inflammatory and cell adhesion molecules. On the other hand, overexpression of the HO-1 gene by a pcDNA 3.1D/V5-HO-1 plasmid significantly mitigated ROS production, increased cell survival and decreased the expression of inflammatory genes. HO-1 expression protected HMECs from DEP-induced prooxidative and proinflammatory effects. Modulation of HO-1 expression could potentially serve as a therapeutic target in an attempt to inhibit the cardiovascular effects of ambient PM.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Células Endoteliales/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Moléculas de Adhesión Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Células Endoteliales/enzimología , Células Endoteliales/patología , Inhibidores Enzimáticos/toxicidad , Hemo-Oxigenasa 1/antagonistas & inhibidores , Hemo-Oxigenasa 1/genética , Humanos , Mediadores de Inflamación/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Medición de Riesgo , Factores de Tiempo , Transfección , Respuesta de Proteína Desplegada/efectos de los fármacos
14.
Arterioscler Thromb Vasc Biol ; 33(6): 1153-61, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23559632

RESUMEN

OBJECTIVE: To evaluate whether exposure to air pollutants induces oxidative modifications of plasma lipoproteins, resulting in alteration of the protective capacities of high-density lipoproteins (HDLs). APPROACH AND RESULTS: We exposed apolipoprotein E-deficient mice to diesel exhaust (DE) at ≈ 250 µg/m(3) for 2 weeks, filtered air (FA) for 2 weeks, or DE for 2 weeks, followed by FA for 1 week (DE+FA). DE led to enhanced lipid peroxidation in the brochoalveolar lavage fluid that was accompanied by effects on HDL functionality. HDL antioxidant capacity was assessed by an assay that evaluated the ability of HDL to inhibit low-density lipoprotein oxidation estimated by 2',7'-dichlorofluorescein fluorescence. HDL from DE-exposed mice exhibited 23,053 ± 2844 relative fluorescence units, higher than FA-exposed mice (10,282 ± 1135 relative fluorescence units, P<0.001) but similar to the HDL from DE+FA-exposed mice (22,448 ± 3115 relative fluorescence units). DE effects on HDL antioxidant capacity were negatively correlated with paraoxonase enzymatic activity, but positively correlated with levels of plasma 8-isoprostanes, 12-hydroxyeicosatetraenoic acid, 13-hydroxyoctadecadienoic acid, liver malondialdehyde, and accompanied by perturbed HDL anti-inflammatory capacity and activation of the 5-lipoxygenase pathway in the liver. CONCLUSIONS: DE emissions induced systemic pro-oxidant effects that led to the development of dysfunctional HDL. This may be one of the mechanisms by which air pollution contributes to enhanced atherosclerosis.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Exposición por Inhalación/efectos adversos , Peroxidación de Lípido , Lipoproteínas HDL/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Antioxidantes/metabolismo , Apolipoproteínas E/deficiencia , Araquidonato 5-Lipooxigenasa/genética , Arildialquilfosfatasa/metabolismo , Modelos Animales de Enfermedad , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Ratones , Ratones Endogámicos , Distribución Aleatoria , Valores de Referencia , Transducción de Señal , Emisiones de Vehículos
15.
Inhal Toxicol ; 26(14): 861-5, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25472476

RESUMEN

CONTEXT: Smoking is associated with increased fibrinogen and decreased paraoxonase (PON) activity, markers of inflammation and oxidative stress, in patients with coronary artery disease. OBJECTIVE: We tested the hypothesis that the adverse effect of smoking on these biomarkers of inflammation and oxidative stress would be detectable in otherwise healthy young female habitual smokers. MATERIALS AND METHODS: Thirty-eight young women participated in the study (n = 20 habitual smokers, n = 18 non-smokers). Fibrinogen, PON-1 activity and HDL oxidant index (HOI) were measured. RESULTS: Mean values of fibrinogen, PON-1 activity and log HOI were not different between the groups. Importantly, however, decreased PON-1 activity (rs = -0.51, p = 0.03) and increased fibrinogen (rs = 0.49, p = 0.04) were significantly correlated with increasing number of cigarettes smoked per day in habitual smokers. DISCUSSION AND CONCLUSION: Cigarette smoking is associated with a dose-dependent adverse effect on PON-1 activity and fibrinogen in young women, which may have implications for future cardiovascular risk.


Asunto(s)
Arildialquilfosfatasa/metabolismo , Fibrinógeno/metabolismo , Fumar/efectos adversos , Adulto , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/patología , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Estrés Oxidativo/efectos de los fármacos , Factores de Riesgo , Adulto Joven
16.
Inhal Toxicol ; 26(1): 23-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24417404

RESUMEN

CONTEXT: High-density lipoprotein (HDL) particles perform numerous vascular-protective functions. Animal studies demonstrate that exposure to fine or ultrafine particulate matter (PM) can promote HDL dysfunction. However, the impact of PM on humans remains unknown. OBJECTIVE: We aimed to determine the effect of exposure to coarse concentrated ambient particles (CAP) on several metrics of HDL function in healthy humans. METHODS: Thirty-two adults (25.9 ± 6.6 years) were exposed to coarse CAP [76.2 ± 51.5 µg·m(-3)] in a rural location and filtered air (FA) for 2 h in a randomized double-blind crossover study. Venous blood collected 2- and 20-h post-exposures was measured for HDL-mediated efflux of [(3)H]-cholesterol from cells and 20-h exposures for HDL anti-oxidant capacity by a fluorescent assay and paraoxonase activity. The changes [median (first, third quartiles)] between exposures among 29 subjects with available results were compared by matched Wilcoxon tests. RESULTS: HDL-mediated cholesterol efflux capacity did not differ between exposures at either time point [16.60% (15.17, 19.19) 2-h post-CAP versus 17.56% (13.43, 20.98) post-FA, p = 0.768 and 14.90% (12.47, 19.15) 20-h post-CAP versus 17.75% (13.22, 23.95) post-FA, p = 0.216]. HOI [0.26 (0.24, 0.35) versus 0.28 (0.25, 0.40), p = 0.198] and paraoxonase activity [0.54 (0.39, 0.82) versus 0.60 µmol·min(-1 )ml plasma(-1) (0.40, 0.85), p = 0.137] did not differ 20-h post-CAP versus FA, respectively. CONCLUSIONS: Brief inhalation of coarse PM from a rural location did not acutely impair several facets of HDL functionality. Whether coarse PM derived from urban sites, fine particles or longer term PM exposures can promote HDL dysfunction warrant future investigations.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Lipoproteínas HDL/sangre , Material Particulado/toxicidad , Adolescente , Adulto , Contaminación del Aire/efectos adversos , Animales , Arildialquilfosfatasa/sangre , Línea Celular Tumoral , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Tamaño de la Partícula , Población Rural , Adulto Joven
17.
Environ Pollut ; : 124415, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908672

RESUMEN

Air pollution is a prominent cause of cardiopulmonary illness, but uncertainties remain regarding the mechanisms mediating those effects as well as individual susceptibility. Macrophages are highly responsive to particles, and we hypothesized that their responses would be dependent on their genetic backgrounds. We conducted a genome-wide analysis of peritoneal macrophages harvested from 24 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). Cells were treated with a DEP methanol extract (DEPe) to elucidate potential mechanisms that mediate acute responses to air pollution exposures. This analysis showed that 1,247 genes were upregulated and 1,383 genes were downregulated with DEPe treatment across strains. Pathway analysis identified oxidative stress responses among the most prominent upregulated pathways; indeed, many of the upregulated genes included antioxidants such as Hmox1, Txnrd1, Srxn1, and Gclm, with NRF2 (official gene symbol: Nfe2l2) being the most significant driver. DEPe induced a Mox-like transcriptomic profile, a macrophage subtype typically induced by oxidized phospholipids and likely dependent on NRF2 expression. Analysis of individual strains revealed consistency of overall responses to DEPe and yet differences in the degree of Mox-like polarization across the various strains, indicating DEPe x genetic interactions. These results suggest a role for macrophage polarization in the cardiopulmonary toxicity induced by air pollution.

18.
J Lipid Res ; 54(6): 1608-1615, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23564731

RESUMEN

Exposure to ambient particulate matter (PM) is a risk factor for cardiovascular diseases. The redox-active ultrafine particles (UFPs) promote vascular oxidative stress and inflammatory responses. We hypothesized that UFPs modulated lipid metabolism and anti-oxidant capacity of high density lipoprotein (HDL) with an implication in atherosclerotic lesion size. Fat-fed low density lipoprotein receptor-null (LDLR⁻/⁻ mice were exposed to filtered air (FA) or UFPs for 10 weeks with or without administering an apolipoprotein A-I mimetic peptide made of D-amino acids, D-4F. LDLR⁻/⁻ mice exposed to UFPs developed a reduced plasma HDL level (P < 0.01), paraoxonase activity (P < 0.01), and HDL anti-oxidant capacity (P < 0.05); but increased LDL oxidation, free oxidized fatty acids, triglycerides, serum amyloid A (P < 0.05), and tumor necrosis factor α (P < 0.05), accompanied by a 62% increase in the atherosclerotic lesion ratio of the en face aortic staining and a 220% increase in the cross-sectional lesion area of the aortic sinus (P < 0.001). D-4F administration significantly attenuated these changes. UFP exposure promoted pro-atherogenic lipid metabolism and reduced HDL anti-oxidant capacity in fat-fed LDLR⁻/⁻ mice, associated with a greater atherosclerotic lesion size compared with FA-exposed animals. D-4F attenuated UFP-mediated pro-atherogenic effects, suggesting the role of lipid oxidation underlying UFP-mediated atherosclerosis.


Asunto(s)
Antioxidantes/metabolismo , Grasas de la Dieta/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipoproteínas HDL/metabolismo , Material Particulado/efectos adversos , Receptores de LDL , Animales , Apolipoproteína A-I/farmacología , Aterosclerosis/inducido químicamente , Aterosclerosis/genética , Aterosclerosis/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , Oxidación-Reducción/efectos de los fármacos , Material Particulado/farmacología , Peptidomiméticos/farmacología
20.
Circ Res ; 109(5): e27-41, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21737788

RESUMEN

RATIONALE: Oxidized palmitoyl arachidonyl phosphatidylcholine (Ox-PAPC) accumulates in atherosclerotic lesions, is proatherogenic, and influences the expression of more than 1000 genes in endothelial cells. OBJECTIVE: To elucidate the major pathways involved in Ox-PAPC action, we conducted a systems analysis of endothelial cell gene expression after exposure to Ox-PAPC. METHODS AND RESULTS: We used the variable responses of primary endothelial cells from 149 individuals exposed to Ox-PAPC to construct a network that consisted of 11 groups of genes, or modules. Modules were enriched for a broad range of Gene Ontology pathways, some of which have not been identified previously as major Ox-PAPC targets. Further validating our method of network construction, modules were consistent with relationships established by cell biology studies of Ox-PAPC effects on endothelial cells. This network provides novel hypotheses about molecular interactions, as well as candidate molecular regulators of inflammation and atherosclerosis. We validated several hypotheses based on network connections and genomic association. Our network analysis predicted that the hub gene CHAC1 (cation transport regulator homolog 1) was regulated by the ATF4 (activating transcription factor 4) arm of the unfolded protein response pathway, and here we showed that ATF4 directly activates an element in the CHAC1 promoter. We showed that variation in basal levels of heme oxygenase 1 (HMOX1) contribute to the response to Ox-PAPC, consistent with its position as a hub in our network. We also identified G-protein-coupled receptor 39 (GPR39) as a regulator of HMOX1 levels and showed that it modulates the promoter activity of HMOX1. We further showed that OKL38/OSGN1 (oxidative stress-induced growth inhibitor), the hub gene in the blue module, is a key regulator of both inflammatory and antiinflammatory molecules. CONCLUSIONS: Our systems genetics approach has provided a broad view of the pathways involved in the response of endothelial cells to Ox-PAPC and also identified novel regulatory mechanisms.


Asunto(s)
Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Redes Reguladoras de Genes/fisiología , Hemo-Oxigenasa 1/fisiología , Fosfatidilcolinas/fisiología , Adulto , Aterosclerosis/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Células Cultivadas , Endotelio Vascular/enzimología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Humanos , Fosfatidilcolinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA