Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunol Rev ; 303(1): 35-51, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34368957

RESUMEN

The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.


Asunto(s)
Células Plasmáticas , eIF-2 Quinasa , Estrés del Retículo Endoplásmico , Células Plasmáticas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
2.
FASEB J ; 37(12): e23283, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37983957

RESUMEN

Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones , Animales , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Estrés del Retículo Endoplásmico/genética , Microglía/metabolismo
3.
Immunity ; 43(3): 409-11, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26377891

RESUMEN

Bacterial infection induces inflammasome activation and release of interleukin-1 (IL-1) cytokines. Bronner et al. (2015) show that during Brucella abortus infection, an endoplasmic reticulum stress sensor, IRE1α, initiates NLRP3- and caspase-2-mediated mitochondrial damage that potentiates NLRP3 inflammasome assembly.


Asunto(s)
Proteínas Portadoras/inmunología , Caspasa 2/inmunología , Estrés del Retículo Endoplásmico/inmunología , Inflamasomas/inmunología , Mitocondrias/inmunología , Animales , Humanos
4.
J Inherit Metab Dis ; 47(4): 766-777, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38597022

RESUMEN

ALG3-CDG is a rare congenital disorder of glycosylation (CDG) with a clinical phenotype that includes neurological manifestations, transaminitis, and frequent infections. The ALG3 enzyme catalyzes the first step of endoplasmic reticulum (ER) luminal glycan extension by adding mannose from Dol-P-Man to Dol-PP-Man5GlcNAc2 (Man5) forming Dol-PP-Man6. Such glycan extension is the first and fastest cellular response to ER stress, which is deficient in ALG3-CDG. In this study, we provide evidence that the unfolded protein response (UPR) and ER-associated degradation activities are increased in ALG3-CDG patient-derived cultured skin fibroblasts and there is constitutive activation of UPR mediated by the IRE1-α pathway. In addition, we show that N-linked Man3-4 glycans are increased in cellular glycoproteins and secreted plasma glycoproteins with hepatic or non-hepatic origin. We found that like other CDGs such as ALG1- or PMM2-CDG, in transferrin, the assembling intermediate Man5 in ALG3-CDG, are likely further processed into a distinct glycan, NeuAc1Gal1GlcNAc1Man3GlcNAc2, probably by Golgi mannosidases and glycosyltransferases. We predict it to be a mono-antennary glycan with the same molecular weight as the truncated glycan described in MGAT2-CDG. In summary, this study elucidates multiple previously unrecognized biochemical consequences of the glycan extension deficiency in ALG3-CDG which will have important implications in the pathogenesis of CDG.


Asunto(s)
Trastornos Congénitos de Glicosilación , Estrés del Retículo Endoplásmico , Fibroblastos , Manosiltransferasas , Polisacáridos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Humanos , Polisacáridos/metabolismo , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Fibroblastos/metabolismo , Respuesta de Proteína Desplegada , Retículo Endoplásmico/metabolismo , Glicosilación , Células Cultivadas , Degradación Asociada con el Retículo Endoplásmico
5.
J Biol Chem ; 296: 100781, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34000298

RESUMEN

The unfolded protein response plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its endoplasmic reticulum luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering). Once assembled, the kinase domain trans-autophosphorylates a neighboring IRE1α, inducing a conformational change that activates the RNase effector domain. However, the full details of how the signal is transmitted are not known. Here, we describe a previously unrecognized role for helix αK, located between the kinase and RNase domains of IRE1α, in conveying this critical conformational change. Using constructs containing mutations within this interdomain helix, we show that distinct substitutions affect oligomerization, kinase activity, and the RNase activity of IRE1α differentially. Furthermore, using both biochemical and computational methods, we found that different residues at position 827 specify distinct conformations at distal sites of the protein, such as in the RNase domain. Of importance, an RNase-inactive mutant, L827P, can still dimerize with wildtype monomers, but this mutation inactivates the wildtype molecule and renders leukemic cells more susceptible to stress. We surmise that helix αK is a conduit for the activation of IRE1α in response to stress.


Asunto(s)
Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Línea Celular , Endorribonucleasas/química , Humanos , Modelos Moleculares , Conformación Proteica en Hélice alfa , Dominios Proteicos , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Ribonucleasas/metabolismo
6.
Mol Cell ; 53(4): 562-576, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24508390

RESUMEN

The response to endoplasmic reticulum (ER) stress relies on activation of unfolded protein response (UPR) sensors, and the outcome of the UPR depends on the duration and strength of signal. Here, we demonstrate a mechanism that attenuates the activity of the UPR sensor inositol-requiring enzyme 1α (IRE1α). A resident ER protein disulfide isomerase, PDIA6, limits the duration of IRE1α activity by direct binding to cysteine 148 in the lumenal domain of the sensor, which is oxidized when IRE1 is activated. PDIA6-deficient cells hyperrespond to ER stress with sustained autophosphorylation of IRE1α and splicing of XBP1 mRNA, resulting in exaggerated upregulation of UPR target genes and increased apoptosis. In vivo, PDIA6-deficient C. elegans exhibits constitutive UPR and fails to complete larval development, a program that normally requires the UPR. Thus, PDIA6 activity provides a mechanism that limits UPR signaling and maintains it within a physiologically appropriate range.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Regulación Enzimológica de la Expresión Génica , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Proliferación Celular , Cisteína/química , Disulfuros/química , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Inositol/química , Ratones , Datos de Secuencia Molecular , Oxígeno/química , Fosforilación , Desnaturalización Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
7.
FASEB J ; 33(9): 9811-9827, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31199681

RESUMEN

The sensors of the unfolded protein response react to endoplasmic reticulum (ER) stress by transient activation of their enzymatic activities, which initiate various signaling cascades. In addition, the sensor IRE1α exhibits stress-induced clustering in a transient time frame similar to activation of its endoRNase activity. Previous work had suggested that the clustering response and RNase activity of IRE1α are functionally linked, but here we show that they are independent of each other and have different behaviors and modes of activation. Although both clustering and the RNase activity are responsive to luminal stress conditions and to depletion of the ER chaperone binding protein, RNase-inactive IRE1α still clusters and, conversely, full RNase activity can be accomplished without clustering. The clusters formed by RNase-inactive IRE1α are much larger and persist longer than those induced by ER stress. Clustering requires autophosphorylation, and an IRE1α mutant whose RNase domain is responsive to ligands that bind the kinase domain forms yet a third type of stress-independent cluster, with distinct physical properties and half-lives. These data suggest that IRE1α clustering can follow distinct pathways upon activation of the sensor.-Ricci, D., Marrocco, I., Blumenthal, D., Dibos, M., Eletto, D., Vargas, J., Boyle, S., Iwamoto, Y., Chomistek, S., Paton, J. C., Paton, A. W., Argon, Y. Clustering of IRE1α depends on sensing ER stress but not on its RNase activity.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Análisis por Conglomerados , Endorribonucleasas/genética , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Ratones , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
8.
Hum Mol Genet ; 24(17): 4829-47, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26041819

RESUMEN

Mitochondrial respiratory chain (RC) disease therapies directed at intra-mitochondrial pathology are largely ineffective. Recognizing that RC dysfunction invokes pronounced extra-mitochondrial transcriptional adaptations, particularly involving dysregulated translation, we hypothesized that translational dysregulation is itself contributing to the pathophysiology of RC disease. Here, we investigated the activities, and effects from direct inhibition, of a central translational regulator (mTORC1) and its downstream biological processes in diverse genetic and pharmacological models of RC disease. Our data identify novel mechanisms underlying the cellular pathogenesis of RC dysfunction, including the combined induction of proteotoxic stress, the ER stress response and autophagy. mTORC1 inhibition with rapamycin partially ameliorated renal disease in B6.Pdss2(kd/kd) mice with complexes I-III/II-III deficiencies, improved viability and mitochondrial physiology in gas-1(fc21) nematodes with complex I deficiency, and rescued viability across a variety of RC-inhibited human cells. Even more effective was probucol, a PPAR-activating anti-lipid drug that we show also inhibits mTORC1. However, directly inhibiting mTORC1-regulated downstream activities yielded the most pronounced and sustained benefit. Partial inhibition of translation by cycloheximide, or of autophagy by lithium chloride, rescued viability, preserved cellular respiratory capacity and induced mitochondrial translation and biogenesis. Cycloheximide also ameliorated proteotoxic stress via a uniquely selective reduction of cytosolic protein translation. RNAseq-based transcriptome profiling of treatment effects in gas-1(fc21) mutants provide further evidence that these therapies effectively restored altered translation and autophagy pathways toward that of wild-type animals. Overall, partially inhibiting cytosolic translation and autophagy offer novel treatment strategies to improve health across the diverse array of human diseases whose pathogenesis involves RC dysfunction.


Asunto(s)
Autofagia , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Biosíntesis de Proteínas , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Supervivencia Celular/efectos de los fármacos , Cicloheximida/farmacología , Citosol , Modelos Animales de Enfermedad , Transporte de Electrón , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática , Perfilación de la Expresión Génica , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Complejos Multiproteicos/metabolismo , Fosforilación , Probucol/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas Quinasas S6 Ribosómicas/metabolismo , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma
9.
FASEB J ; 30(2): 653-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26487694

RESUMEN

Protein disulfide isomerase A6 (PDIA6) interacts with protein kinase RNA-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme (IRE)-1 and inhibits their unfolded protein response signaling. In this study, shRNA silencing of PDIA6 expression in insulin-producing mouse cells reduced insulin production (5-fold) and, consequently, glucose-stimulated insulin secretion (3-4-fold). This inhibition of insulin release was independent of the PDIA6-PERK interaction or PERK activity. Acute inhibition of PERK did not change the short-term response of ß cells to glucose. Rather, PDIA6 affected insulin secretion by modulating one of the activities of IRE1. At 11 mM glucose and lower, the regulated IRE1-dependent decay (RIDD) of the mRNA activity of IRE1 was activated, but not its X-box binding protein (XBP)-1 splicing activity. In the absence of PDIA6, RIDD activity toward insulin transcripts was enhanced up to 4-fold, as shown by molecular assays in cultured cells and the use of a fluorescent reporter in intact islets. Such physiologic activation of IRE1 by glucose contrasted with IRE1 activation by chemical stress, when both IRE1 activities were induced. Thus, whereas the stimulus determines the quality of IRE1 signaling, PDIA6 attenuates multiple enzymatic activities of IRE1, maintaining its signaling within a physiologically tolerable range.


Asunto(s)
Endorribonucleasas/metabolismo , Insulina/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endorribonucleasas/genética , Inhibidores Enzimáticos/farmacología , Silenciador del Gen , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Secreción de Insulina , Islotes Pancreáticos/metabolismo , Proteínas de la Membrana/genética , Ratones , Proteína Disulfuro Isomerasas/genética , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción del Factor Regulador X , Tapsigargina/farmacología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína 1 de Unión a la X-Box , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
10.
J Neurosci ; 35(24): 9088-105, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26085633

RESUMEN

Mutant genes that underlie Mendelian forms of amyotrophic lateral sclerosis (ALS) and biochemical investigations of genetic disease models point to potential driver pathophysiological events involving endoplasmic reticulum (ER) stress and autophagy. Several steps in these cell biological processes are known to be controlled physiologically by small ADP-ribosylation factor (ARF) signaling. Here, we investigated the role of ARF guanine nucleotide exchange factors (GEFs), cytohesins, in models of ALS. Genetic or pharmacological inhibition of cytohesins protects motor neurons in vitro from proteotoxic insults and rescues locomotor defects in a Caenorhabditis elegans model of disease. Cytohesins form a complex with mutant superoxide dismutase 1 (SOD1), a known cause of familial ALS, but this is not associated with a change in GEF activity or ARF activation. ER stress evoked by mutant SOD1 expression is alleviated by antagonism of cytohesin activity. In the setting of mutant SOD1 toxicity, inhibition of cytohesin activity enhances autophagic flux and reduces the burden of misfolded SOD1. These observations suggest that targeting cytohesins may have potential benefits for the treatment of ALS.


Asunto(s)
Proteínas de Caenorhabditis elegans/antagonistas & inhibidores , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Enfermedad de la Neurona Motora/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/biosíntesis , Células Cultivadas , Proteínas Activadoras de GTPasa/antagonistas & inhibidores , Proteínas Activadoras de GTPasa/biosíntesis , Proteínas Activadoras de GTPasa/genética , Factores de Intercambio de Guanina Nucleótido/biosíntesis , Células HeLa , Humanos , Ratones , Modelos Genéticos , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética
11.
J Cell Sci ; 127(Pt 17): 3649-58, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25107370

RESUMEN

In many physiological contexts, intracellular reduction-oxidation (redox) conditions and the unfolded protein response (UPR) are important for the control of cell life and death decisions. UPR is triggered by the disruption of endoplasmic reticulum (ER) homeostasis, also known as ER stress. Depending on the duration and severity of the disruption, this leads to cell adaptation or demise. In this Commentary, we review reductive and oxidative activation mechanisms of the UPR, which include direct interactions of dedicated protein disulfide isomerases with ER stress sensors, protein S-nitrosylation and ER Ca(2+) efflux that is promoted by reactive oxygen species. Furthermore, we discuss how cellular oxidant and antioxidant capacities are extensively remodeled downstream of UPR signals. Aside from activation of NADPH oxidases, mitogen-activated protein kinases and transcriptional antioxidant responses, such remodeling prominently relies on ER-mitochondrial crosstalk. Specific redox cues therefore operate both as triggers and effectors of ER stress, thus enabling amplification loops. We propose that redox-based amplification loops critically contribute to the switch from adaptive to fatal UPR.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada/fisiología , Animales , Humanos
12.
Adv Exp Med Biol ; 847: 45-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25916585

RESUMEN

Because aging is a multifactorial, pleiotropic process where many interacting mechanisms contribute to the organismal decline, the candidate gene approach rarely provides a clear message. This chapter discusses some of the inherent complexity, focusing on aspects that impinge upon protein homeostasis and maintain a healthy proteome. We discuss candidate genes that operate in these pathways, and compare their actions in invertebrates, mice and humans. We highlight several themes that emerge from recent research­the interconnections of pathways that regulate aging, the pleiotropic effects of mutations and other manipulations of the candidate proteins and the tissue specificity in these pleiotropic outcomes. This body of knowledge highlights the need for multiple specific readouts of manipulating longevity genes, beyond measuring lifespan, as well as the need to understand the integrated picture, beyond examining the immediate outputs of individual longevity pathways.


Asunto(s)
Envejecimiento/genética , Homeostasis , Proteínas/metabolismo , Animales , Humanos , Longevidad/genética , Pliegue de Proteína , Sirtuinas/fisiología , Somatomedinas/fisiología , Serina-Treonina Quinasas TOR/fisiología , Proteína p53 Supresora de Tumor/fisiología
13.
Biochim Biophys Acta ; 1833(11): 2410-24, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23507200

RESUMEN

The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality control. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium. We describe the major chaperone networks in the lumen and discuss how they have distinct modes of operation that enable cells to accomplish highly efficient production of the secretome. This article is part of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.


Asunto(s)
Retículo Endoplásmico/metabolismo , Chaperonas Moleculares , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Proteínas/metabolismo , Animales , Humanos , Biosíntesis de Proteínas , Transporte de Proteínas
14.
J Cell Sci ; 125(Pt 20): 4865-75, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22854046

RESUMEN

ER stress leads to upregulation of multiple folding and quality control components, known as the unfolded protein response (UPR). Glucose Regulated Protein 78 (GRP78) (also known as binding immunoglobulin protein, BiP, and HSPA5) and GRP94 are often upregulated coordinately as part of this homeostatic response. Given that endoplasmic reticulum (ER) chaperones have distinct sets of clients, we asked how cells respond to ablation of individual chaperones. The cellular responses to silencing BiP, GRP94, HSP47, PDIA6 and OS-9, were distinct. When BiP was silenced, a widespread UPR was observed, but when GRP94 was either inhibited or depleted by RNA interference (RNAi), the expression of only some genes was induced, notably those encoding BiP and protein disulfide isomerase A6 (PDIA6). Silencing of HSP47 or OS-9 did not lead to any compensatory induction of other genes. The selective response to GRP94 depletion was distinct from a typical ER stress response, both because other UPR target genes were not affected and because the canonical UPR signaling branches were not activated. The response to silencing of GRP94 did not preclude further UPR induction when chemical stress was imposed. Importantly, re-expression of wild-type GRP94 in the silenced cells prevented the upregulation of BiP and PDIA6, whereas re-expression of an ATPase-deficient GRP94 mutant did not, indicating that cells monitor the activity state of GRP94. These findings suggest that cells are able to distinguish among folding resources and generate distinct responses.


Asunto(s)
Proteínas de Choque Térmico , Glicoproteínas de Membrana , Pliegue de Proteína , Respuesta de Proteína Desplegada/genética , Animales , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/genética , Silenciador del Gen , Células HeLa , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Células 3T3 NIH , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Transducción de Señal
15.
Biochim Biophys Acta ; 1823(3): 774-87, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22079671

RESUMEN

Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94 shares many biochemical features with other HSP90 proteins, in particular its domain structure and ATPase activity, but also displays distinct activities, such as calcium binding, necessitated by the conditions in the endoplasmic reticulum. GRP94's mode of action varies from the general HSP90 theme in the conformational changes induced by nucleotide binding, and in its interactions with co-chaperones, which are very different from known cytosolic co-chaperones. GRP94 is more selective than many of the ER chaperones and the basis for this selectivity remains obscure. Recent development of molecular tools and functional assays has expanded the spectrum of clients that rely on GRP94 activity, but it is still not clear how the chaperone binds them, or what aspect of folding it impacts. These mechanistic questions and the regulation of GRP94 activity by other proteins and by post-translational modification differences pose new questions and present future research avenues. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Pliegue de Proteína
16.
FASEB J ; 26(9): 3691-702, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22649033

RESUMEN

Insulin-like growth factors (IGFs) are critical for development and growth of skeletal muscles, but because several tissues produce IGFs, it is not clear which source is necessary or sufficient for muscle growth. Because it is critical for production of both IGF-I and IGF-II, we ablated glucose-regulated protein 94 (GRP94) in murine striated muscle to test the necessity of local IGFs for normal muscle growth. These mice exhibited smaller skeletal muscles with diminished IGF contents but with normal contractile function and no apparent endoplasmic reticulum stress response. This result shows that muscles rely on GRP94 primarily to support local production of IGFs, a pool that is necessary for normal muscle growth. In addition, body weights were ∼30% smaller than those of littermate controls, and circulating IGF-I also decreased significantly, yet glucose homeostasis was maintained with little disruption to the growth hormone pathway. The growth defect was complemented on administration of recombinant IGF-I. Thus, unlike liver production of IGF-I, muscle IGF-I is necessary not only locally but also globally for whole-body growth.


Asunto(s)
Crecimiento , Glicoproteínas de Membrana/fisiología , Músculo Esquelético/crecimiento & desarrollo , Somatomedinas/antagonistas & inhibidores , Animales , Glucemia/análisis , Células Cultivadas , Inmunohistoquímica , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Somatomedinas/biosíntesis
17.
J Immunol ; 187(11): 5952-63, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22031761

RESUMEN

The hematopoietic actin regulatory protein hematopoietic lineage cell-specific protein 1 (HS1) is required for cell spreading and signaling in lymphocytes, but the scope of HS1 function in Ag presentation has not been addressed. We show that dendritic cells (DCs) from HS1(-/-) mice differentiate normally and display normal LPS-induced upregulation of surface markers and cytokines. Consistent with their normal expression of MHC and costimulatory molecules, HS1(-/-) DCs present OVA peptide efficiently to CD4(+) T cells. However, presentation of OVA protein is defective. Similarly, MHC class I-dependent presentation of VSV8 peptide to CD8(+) T cells occurs normally, but cross-presentation of GRP94/VSV8 complexes is defective. Analysis of Ag uptake pathways shows that HS1 is required for receptor-mediated endocytosis, but not for phagocytosis or macropinocytosis. HS1 interacts with dynamin 2, a protein involved in scission of endocytic vesicles. However, HS1(-/-) DCs showed decreased numbers of endocytic invaginations, whereas dynamin-inhibited cells showed accumulation of these endocytic intermediates. Taken together, these studies show that HS1 promotes an early step in the endocytic pathway that is required for efficient Ag presentation of exogenous Ag by DCs.


Asunto(s)
Presentación de Antígeno/inmunología , Células Dendríticas/inmunología , Endocitosis/inmunología , Factor Estimulante de Colonias de Granulocitos/inmunología , Animales , Western Blotting , Separación Celular , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Ovalbúmina/inmunología
18.
J Immunol ; 186(8): 4805-18, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21398607

RESUMEN

Dendritic cells (DCs) are professional APCs that reside in peripheral tissues and survey the body for pathogens. Upon activation by inflammatory signals, DCs undergo a maturation process and migrate to lymphoid organs, where they present pathogen-derived Ags to T cells. DC migration depends on tight regulation of the actin cytoskeleton to permit rapid adaptation to environmental cues. We investigated the role of hematopoietic lineage cell-specific protein 1 (HS1), the hematopoietic homolog of cortactin, in regulating the actin cytoskeleton of murine DCs. HS1 localized to lamellipodial protrusions and podosomes, actin-rich structures associated with adhesion and migration. DCs from HS1(-/-) mice showed aberrant lamellipodial dynamics. Moreover, although these cells formed recognizable podosomes, their podosome arrays were loosely packed and improperly localized within the cell. HS1 interacts with Wiskott-Aldrich syndrome protein (WASp), another key actin-regulatory protein, through mutual binding to WASp-interacting protein. Comparative analysis of DCs deficient for HS1, WASp or both proteins revealed unique roles for these proteins in regulating podosomes with WASp being essential for podosome formation and with HS1 ensuring efficient array organization. WASp recruitment to podosome cores was independent of HS1, whereas HS1 recruitment required Src homology 3 domain-dependent interactions with the WASp/WASp-interacting protein heterodimer. In migration assays, the phenotypes of HS1- and WASp-deficient DCs were related, but distinct. WASp(-/y) DCs migrating in a chemokine gradient showed a large decrease in velocity and diminished directional persistence. In contrast, HS1(-/-) DCs migrated faster than wild-type cells, but directional persistence was significantly reduced. These studies show that HS1 functions in concert with WASp to fine-tune DC cytoarchitecture and direct cell migration.


Asunto(s)
Quimiotaxis/inmunología , Células Dendríticas/inmunología , Factor Estimulante de Colonias de Granulocitos/inmunología , Proteína del Síndrome de Wiskott-Aldrich/inmunología , Actinas/genética , Actinas/metabolismo , Animales , Presentación de Antígeno/inmunología , Western Blotting , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/metabolismo , Movimiento Celular/inmunología , Células Cultivadas , Citoesqueleto/inmunología , Citoesqueleto/metabolismo , Células Dendríticas/metabolismo , Factor Estimulante de Colonias de Granulocitos/genética , Factor Estimulante de Colonias de Granulocitos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Unión Proteica , Seudópodos/inmunología , Seudópodos/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
19.
bioRxiv ; 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37131811

RESUMEN

Activation of the ER stress sensor IRE1α contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the other hand, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells, but exhibited a strong protective effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Significant improvement in motor function was found in IRE1C148S mice with EAE relative to WT mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of pro-inflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced CNPase levels, suggestiing improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the activation of microglial activation marker IBA1, along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be protective in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of the ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.

20.
Blood Adv ; 7(9): 1650-1665, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-36508284

RESUMEN

Extracellular protein disulfide isomerases (PDIs), including PDI, endoplasmic reticulum protein 57 (ERp57), ERp72, ERp46, and ERp5, are required for in vivo thrombus formation in mice. Platelets secrete PDIs upon activation, which regulate platelet aggregation. However, platelets secrete only ∼10% of their PDI content extracellularly. The intracellular role of PDIs in platelet function is unknown. Here, we aim to characterize the role of ERp5 (gene Pdia6) using platelet conditional knockout mice, platelet factor 4 (Pf4) Cre+/ERp5floxed (fl)/fl. Pf4Cre+/ERp5fl/fl mice developed mild macrothrombocytopenia. Platelets deficient in ERp5 showed marked dysregulation of their ER, indicated by a twofold upregulation of ER proteins, including PDI, ERp57, ERp72, ERp46, 78 kilodalton glucose-regulated protein (GRP78), and calreticulin. ERp5-deficient platelets showed an enhanced ER stress response to ex vivo and in vivo ER stress inducers, with enhanced phosphorylation of eukaryotic translation initiation factor 2A and inositol-requiring enzyme 1 (IRE1). ERp5 deficiency was associated with increased secretion of PDIs, an enhanced response to thromboxane A2 receptor activation, and increased thrombus formation in vivo. Our results support that ERp5 acts as a negative regulator of ER stress responses in platelets and highlight the importance of a disulfide isomerase in platelet ER homeostasis. The results also indicate a previously unanticipated role of platelet ER stress in platelet secretion and thrombosis. This may have important implications for the therapeutic applications of ER stress inhibitors in thrombosis.


Asunto(s)
Plaquetas , Trombosis , Animales , Ratones , Plaquetas/metabolismo , Agregación Plaquetaria , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Hemostasis , Trombosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA