Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Virol ; 90(4): 1888-97, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26656692

RESUMEN

UNLABELLED: Although avian H5N1 influenza virus has yet to develop the capacity for human-to-human spread, the severity of the rare cases of human infection has warranted intensive follow-up of potentially exposed individuals that may require antiviral prophylaxis. For countries where antiviral drugs are limited, the World Health Organization (WHO) has developed a risk categorization for different levels of exposure to environmental, poultry, or human sources of infection. While these take into account the infection source, they do not account for the likely mode of virus entry that the individual may have experienced from that source and how this could affect the disease outcome. Knowledge of the kinetics and spread of virus after natural routes of exposure may further inform the risk of infection, as well as the likely disease severity. Using the ferret model of H5N1 infection, we compared the commonly used but artificial inoculation method that saturates the total respiratory tract (TRT) with virus to upper respiratory tract (URT) and oral routes of delivery, those likely to be encountered by humans in nature. We show that there was no statistically significant difference in survival rate with the different routes of infection, but the disease characteristics were somewhat different. Following URT infection, viral spread to systemic organs was comparatively delayed and more focal than after TRT infection. By both routes, severe disease was associated with early viremia and central nervous system infection. After oral exposure to the virus, mild infections were common suggesting consumption of virus-contaminated liquids may be associated with seroconversion in the absence of severe disease. IMPORTANCE: Risks for human H5N1 infection include direct contact with infected birds and frequenting contaminated environments. We used H5N1 ferret infection models to show that breathing in the virus was more likely to produce clinical infection than swallowing contaminated liquid. We also showed that virus could spread from the respiratory tract to the brain, which was associated with end-stage disease, and very early viremia provided a marker for this. With upper respiratory tract exposure, infection of the brain was common but hard to detect, suggesting that human neurological infections might be typically undetected at autopsy. However, viral spread to systemic sites was slower after exposure to virus by this route than when virus was additionally delivered to the lungs, providing a better therapeutic window. In addition to exposure history, early parameters of infection, such as viremia, could help prioritize antiviral treatments for patients most at risk of succumbing to infection.


Asunto(s)
Modelos Animales de Enfermedad , Transmisión de Enfermedad Infecciosa , Subtipo H5N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Animales , Femenino , Hurones , Masculino , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/transmisión , Medición de Riesgo , Análisis de Supervivencia
2.
Emerg Infect Dis ; 20(3): 372-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24572697

RESUMEN

In recent years, the emergence of several highly pathogenic zoonotic diseases in humans has led to a renewed emphasis on the interconnectedness of human, animal, and environmental health, otherwise known as One Health. For example, Hendra virus (HeV), a zoonotic paramyxovirus, was discovered in 1994, and since then, infections have occurred in 7 humans, each of whom had a strong epidemiologic link to similarly affected horses. As a consequence of these outbreaks, eradication of bat populations was discussed, despite their crucial environmental roles in pollination and reduction of the insect population. We describe the development and evaluation of a vaccine for horses with the potential for breaking the chain of HeV transmission from bats to horses to humans, thereby protecting horse, human, and environmental health. The HeV vaccine for horses is a key example of a One Health approach to the control of human disease.


Asunto(s)
Salud Ambiental , Virus Hendra/inmunología , Infecciones por Henipavirus/prevención & control , Enfermedades de los Caballos/prevención & control , Vacunas Virales/inmunología , Zoonosis/prevención & control , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Femenino , Hurones , Cobayas , Virus Hendra/genética , Enfermedades de los Caballos/patología , Enfermedades de los Caballos/virología , Caballos , Humanos , Inmunización , Pruebas de Neutralización , Zoonosis/patología , Zoonosis/virología
3.
J Antimicrob Chemother ; 69(9): 2458-69, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24840623

RESUMEN

OBJECTIVES: The emergence of the pandemic influenza A(H1N1)pdm09 virus in 2009 saw a significant increase in the therapeutic and prophylactic use of neuraminidase inhibitors (NAIs) to mitigate the impact of this highly transmissible virus. Prior to the pandemic, many countries stockpiled NAIs and developed pandemic plans for the use of antiviral drugs, based on either treatment of high-risk individuals and/or prophylaxis of contacts. However, to date there has been a lack of in vivo models to test the efficacy of treatment or prophylaxis with NAIs, for influenza-infected individuals or exposed contacts, in a household setting. METHODS: A ferret model of household contact was developed to study the efficacy of different prophylaxis regimens in preventing infection in contact ferrets exposed to influenza A(H1N1)pdm09-infected index ferrets. RESULTS: Among the different prophylactic regimens, contact ferrets receiving oseltamivir prophylaxis twice daily showed better outcomes than those receiving oseltamivir once daily. Benefits included a significant delay in the time to secondary infection, lower weight loss and higher activity levels. The treatment of index ferrets at 36 h post-infection did not influence either secondary infection rates or clinical symptoms in exposed contact ferrets. Neither prophylaxis nor treatment prevented infection or reduced the duration of viral shedding, although clinical symptoms did improve in infected animals receiving prophylaxis. CONCLUSIONS: Different oseltamivir prophylaxis regimens did not prevent infections, but consistently resulted in a reduction in symptoms in infected ferrets. However, oseltamivir prophylaxis failed to reduce viral titres, which warrants further investigation in humans.


Asunto(s)
Antivirales/administración & dosificación , Transmisión de Enfermedad Infecciosa/prevención & control , Gripe Humana/patología , Gripe Humana/prevención & control , Oseltamivir/administración & dosificación , Profilaxis Pre-Exposición/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Hurones , Humanos , Gripe Humana/transmisión , Masculino , Índice de Severidad de la Enfermedad , Carga Viral , Esparcimiento de Virus
4.
Virol J ; 11: 102, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24890603

RESUMEN

BACKGROUND: Nipah virus and Hendra virus are closely related and following natural or experimental exposure induce similar clinical disease. In humans, encephalitis is the most serious outcome of infection and, hitherto, research into the pathogenesis of henipavirus encephalitis has been limited by the lack of a suitable model. Recently we reported a wild-type mouse model of Hendra virus (HeV) encephalitis that should facilitate detailed investigations of its neuropathogenesis, including mechanisms of disease recrudescence. In this study we investigated the possibility of developing a similar model of Nipah virus encephalitis. FINDINGS: Aged and young adult wild type mice did not develop clinical disease including encephalitis following intranasal exposure to either the Malaysia (NiV-MY) or Bangladesh (NiV-BD) strains of Nipah virus. However viral RNA was detected in lung tissue of mice at euthanasia (21 days following exposure) accompanied by a non-neutralizing antibody response. In a subsequent time course trial this viral RNA was shown to be reflective of an earlier self-limiting and subclinical lower respiratory tract infection through successful virus re-isolation and antigen detection in lung. There was no evidence for viremia or infection of other organs, including brain. CONCLUSIONS: Mice develop a subclinical self-limiting lower respiratory tract infection but not encephalitis following intranasal exposure to NiV-BD or NiV-MY. These results contrast with those reported for HeV under similar exposure conditions in mice, demonstrating a significant biological difference in host clinical response to exposure with these viruses. This finding provides a new platform from which to explore the viral and/or host factors that determine the neuroinvasive ability of henipaviruses.


Asunto(s)
Infecciones Asintomáticas , Modelos Animales de Enfermedad , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/virología , Virus Nipah/aislamiento & purificación , Animales , Anticuerpos Antivirales/sangre , Pulmón/virología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
5.
Virol J ; 10: 95, 2013 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-23521919

RESUMEN

BACKGROUND: Hendra virus (HeV) is an Australian bat-borne zoonotic paramyxovirus that repeatedly spills-over to horses causing fatal disease. Human cases have all been associated with close contact with infected horses. METHODS: A full-length antigenome clone of HeV was assembled, a reporter gene (GFP or luciferase) inserted between the P and M genes and transfected to 293T cells to generate infectious reporter gene-encoding recombinant viruses. These viruses were then assessed in vitro for expression of the reporter genes. The GFP expressing recombinant HeV was used to challenge ferrets to assess the virulence and tissue distribution by monitoring GFP expression in infected cells. RESULTS: Three recombinant HeV constructs were successfully cloned and rescued; a wild-type virus, a GFP-expressing virus and a firefly luciferase-expressing virus. In vitro characterisation demonstrated expression of the reporter genes, with levels proportional to the initial inoculum levels. Challenge of ferrets with the GFP virus demonstrated maintenance of the fatal phenotype with disease progressing to death consistent with that observed previously with the parental wild-type isolate of HeV. GFP expression could be observed in infected tissues collected from animals at euthanasia. CONCLUSIONS: Here, we report on the first successful rescue of recombinant HeV, including wild-type virus and viruses expressing two different reporter genes encoded as an additional gene cassette inserted between the P and M genes. We further demonstrate that the GFP virus retained the ability to cause fatal disease in a well-characterized ferret model of henipavirus infection despite the genome being an extra 1290 nucleotides in length.


Asunto(s)
Genes Reporteros , Virus Hendra/genética , Virus Hendra/patogenicidad , Infecciones por Henipavirus/virología , Animales , Línea Celular , Modelos Animales de Enfermedad , Hurones , Proteínas Fluorescentes Verdes/genética , Humanos , Luciferasas/genética , Masculino , Coloración y Etiquetado/métodos , Análisis de Supervivencia , Virulencia
6.
Virol J ; 10: 237, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23867060

RESUMEN

BACKGROUND: Nipah virus (NiV) is a zoonotic virus belonging to the henipavirus genus in the family Paramyxoviridae. Since NiV was first identified in 1999, outbreaks have continued to occur in humans in Bangladesh and India on an almost annual basis with case fatality rates reported between 40% and 100%. METHODS: Ferrets were vaccinated with 4, 20 or 100 µg HeVsG formulated with the human use approved adjuvant, CpG, in a prime-boost regime. One half of the ferrets were exposed to NiV at 20 days post boost vaccination and the other at 434 days post vaccination. The presence of virus or viral genome was assessed in ferret fluids and tissues using real-time PCR, virus isolation, histopathology, and immunohistochemistry; serology was also carried out. Non-immunised ferrets were also exposed to virus to confirm the pathogenicity of the inoculum. RESULTS: Ferrets exposed to Nipah virus 20 days post vaccination remained clinically healthy. Virus or viral genome was not detected in any tissues or fluids of the vaccinated ferrets; lesions and antigen were not identified on immunohistological examination of tissues; and there was no increase in antibody titre during the observation period, consistent with failure of virus replication. Of the ferrets challenged 434 days post vaccination, all five remained well throughout the study period; viral genome - but not virus - was recovered from nasal secretions of one ferret given 20 µg HeVsG and bronchial lymph nodes of the other. There was no increase in antibody titre during the observation period, consistent with lack of stimulation of a humoral memory response. CONCLUSIONS: We have previously shown that ferrets vaccinated with 4, 20 or 100 µg HeVsG formulated with CpG adjuvant, which is currently in several human clinical trials, were protected from HeV disease. Here we show, under similar conditions of use, that the vaccine also provides protection against NiV-induced disease. Such protection persists for at least 12 months post-vaccination, with data supporting only localised and self-limiting virus replication in 2 of 5 animals. These results augur well for acceptability of the vaccine to industry.


Asunto(s)
Infecciones por Henipavirus/prevención & control , Virus Nipah/inmunología , Proteínas Estructurales Virales/inmunología , Vacunas Virales/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Estructuras Animales/patología , Estructuras Animales/virología , Animales , Anticuerpos Antivirales/sangre , Líquidos Corporales/virología , Modelos Animales de Enfermedad , Hurones , Infecciones por Henipavirus/inmunología , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/virología , Masculino , Virus Nipah/genética , Oligodesoxirribonucleótidos/administración & dosificación , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas Estructurales Virales/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
7.
Emerg Infect Dis ; 18(12): 1983-93, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23171621

RESUMEN

Human infections with Nipah virus in Malaysia and Bangladesh are associated with markedly different patterns of transmission and pathogenicity. To compare the 2 strains, we conducted an in vivo study in which 2 groups of ferrets were oronasally exposed to either the Malaysia or Bangladesh strain of Nipah virus. Viral shedding and tissue tropism were compared between the 2 groups. Over the course of infection, significantly higher levels of viral RNA were recovered from oral secretions of ferrets infected with the Bangladesh strain. Higher levels of oral shedding of the Bangladesh strain of Nipah virus might be a key factor in onward transmission in outbreaks among humans.


Asunto(s)
Infecciones por Henipavirus/transmisión , Virus Nipah/fisiología , Animales , Antígenos Virales/metabolismo , Bangladesh , Plexo Coroideo/metabolismo , Plexo Coroideo/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio/metabolismo , Endotelio/patología , Epéndimo/metabolismo , Epéndimo/patología , Hurones/virología , Infecciones por Henipavirus/patología , Infecciones por Henipavirus/virología , Humanos , Malasia , Masculino , Neuronas/metabolismo , Neuronas/patología , Virus Nipah/patogenicidad , Tonsila Palatina/metabolismo , Tonsila Palatina/patología , Carga Viral , Esparcimiento de Virus
8.
PLoS Negl Trop Dis ; 10(6): e0004775, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27341030

RESUMEN

Person-to-person transmission is a key feature of human Nipah virus outbreaks in Bangladesh. In contrast, in an outbreak of Nipah virus in Malaysia, people acquired infections from pigs. It is not known whether this important epidemiological difference is driven primarily by differences between NiV Bangladesh (NiV-BD) and Malaysia (NiV-MY) at a virus level, or by environmental or host factors. In a time course study, ferrets were oronasally exposed to equivalent doses of NiV-BD or NiV-MY. More rapid onset of productive infection and higher levels of virus replication in respiratory tract tissues were seen for NiV-BD compared to NiV-MY, corroborating our previous report of increased oral shedding of NiV-BD in ferrets and suggesting a contributory mechanism for increased NiV-BD transmission between people compared to NiV-MY. However, we recognize that transmission occurs within a social and environmental framework that may have an important and differentiating role in NiV transmission rates. With this in mind, ferret-to-ferret transmission of NiV-BD and NiV-MY was assessed under differing viral exposure conditions. Transmission was not identified for either virus when naïve ferrets were cohoused with experimentally-infected animals. In contrast, all naïve ferrets developed acute infection following assisted and direct exposure to oronasal fluid from animals that were shedding either NiV-BD or NiV-MY. Our findings for ferrets indicate that, although NiV-BD may be shed at higher levels than NiV-MY, transmission risk may be equivalently low under exposure conditions provided by cohabitation alone. In contrast, active transfer of infected bodily fluids consistently results in transmission, regardless of the virus strain. These observations suggest that the risk of NiV transmission is underpinned by social and environmental factors, and will have practical implications for managing transmission risk during outbreaks of human disease.


Asunto(s)
Infecciones por Henipavirus/transmisión , Virus Nipah/fisiología , Animales , Antígenos Virales/aislamiento & purificación , Bangladesh , Chlorocebus aethiops , Modelos Animales de Enfermedad , Hurones , Infecciones por Henipavirus/virología , Humanos , Pulmón/patología , Pulmón/virología , Malasia , Virus Nipah/clasificación , ARN Viral/análisis , ARN Viral/sangre , Distribución Aleatoria , Infecciones del Sistema Respiratorio/virología , Células Vero , Carga Viral , Replicación Viral , Esparcimiento de Virus
9.
Immunotherapy ; 8(9): 1021-32, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27380317

RESUMEN

AIM: Current therapies against avian influenza (H5N1) provide limited clinical benefit. FBF-001 is a highly purified equine polyclonal immunoglobulin fragment against H5N1. METHODS: Using a ferret model of severe acute H5N1 infection, we assessed FBF-001 when administered on the same day or 1 day after viral challenge, in comparison with oseltamivir therapy. RESULTS: Untreated animals died 2-3 days after challenge. FBF-001 prevented most severe illness and reduced nasal viral load, with best efficacy when administered on the day of viral challenge. Oseltamivir and FBF-001 had synergistic impact on survival. CONCLUSION: FBF-001 prevented severe consequences of lethal H5N1 challenge in ferrets by controlling viral replication, an effect synergistic to oseltamivir. FBF-001 has recently been granted EMA orphan drug status.


Asunto(s)
Anticuerpos Antivirales/uso terapéutico , Antivirales/uso terapéutico , Inmunización Pasiva/métodos , Fragmentos Fab de Inmunoglobulinas/uso terapéutico , Subtipo H5N1 del Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/terapia , Oseltamivir/uso terapéutico , Animales , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Quimioterapia Combinada , Hurones , Caballos , Producción de Medicamentos sin Interés Comercial , Infecciones por Orthomyxoviridae/inmunología , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA