Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 200: 108165, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117294

RESUMEN

Green algae usually assigned to the genus Oophila are known to colonize egg capsules of amphibian egg masses across the Nearctic and Palearctic regions. We study the phylogenetic relationships of these algae using a phylotranscriptomic data set of 76 protein-coding single-copy nuclear genes. Our data set includes novel RNAseq data for six amphibian-associated and five free-living green algae, and draft genomes of two of the latter. Within the Oophila clade (nested within Moewusinia), we find samples from two European frogs (Rana dalmatina and R. temporaria) closely related to those of the North American frog R. aurora (Oophila subclade III). An isolate from the North American R. sylvatica (subclade IV) appears to be sister to the Japanese isolate from the salamander Hynobius nigrescens (subclade J1), and subclade I algae from Ambystoma maculatum are sister to all other lineages in the Oophila clade. Two free-living algae (Chlamydomonas nasuta and Cd. pseudogloeogama) are nested within the Oophila clade, and a strain of the type species of Chlorococcum (Cc. infusionum) is related to this assemblage. Our phylotranscriptomic tree suggests that recognition of different species within the Oophila clade ("clade B" of earlier studies) is warranted, and calls for a comprehensive taxonomic revision of Moewusinia.

2.
Eur J Protistol ; 95: 126109, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39126961

RESUMEN

Small chrysomonads are important bacterivores in aquatic ecosystems with a high molecular diversity compared to low morphological differences observed by light microscopy. The high diversity of these morphologically almost indistinguishable species leads to the question to which extent their functional role in ecosystems differs and how their ecological traits can be defined. The present study investigates the prey size and population growth rate of different chrysomonad species. Eleven phylogenetically well-defined strains representing seven strains of heterotrophic and four strains of mixotrophic chrysomonads were compared. All investigated strains belonged to the same functional group of bacterivorous flagellates, feeding on the same bacteria size range, while population growth rates of chrysomonads depended on nutritional strategy and species-specific differences. We observed a high individual variability of growth rates within a population. Our results point to the necessity to consider not only differences in ecological traits among species but also among specimens within a population.

3.
Eur J Protistol ; 95: 126108, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39111267

RESUMEN

Protists can endure challenging environments sustaining key ecosystem processes of the microbial food webs even under aridic or hypersaline conditions. We studied the diversity of protists at different latitudes of the Atacama Desert by massive sequencing of the hypervariable region V9 of the 18S rRNA gene from soils and microbial mats collected in the Andes. The main protist groups in soils detected in active stage through cDNA were cercozoans, ciliates, and kinetoplastids, while the diversity of protists was higher including diatoms and amoebae in the microbial mat detected solely through DNA. Co-occurrence networks from soils indicated similar assemblages dominated by amplicon sequence variants (ASVs) identified as Rhogostoma, Euplotes, and Neobodo. Microbial mat networks, on the other hand, were structured by ASVs classified as raphid-pennate diatoms and amoebae from the genera Hartmannella and Vannella, mostly negatively correlated to flagellates and microalgae. Additionally, our phylogenetic inferences of ASVs classified as Euplotes, Neobodo, and Rhogostoma were supported by sequence data of strains isolated during this study. Our results represent the first snapshot of the diversity patterns of culturable and unculturable protists and putative keystone taxa detected at remote habitats from the Atacama Desert.

4.
Front Microbiol ; 15: 1356977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572231

RESUMEN

Introduction: Heterotrophic protists colonizing microbial mats have received little attention over the last few years, despite their importance in microbial food webs. A significant challenge originates from the fact that many protists remain uncultivable and their functions remain poorly understood. Methods: Metabarcoding studies of protists in microbial mats across high-altitude lagoons of different salinities (4.3-34 practical salinity units) were carried out to provide insights into their vertical stratification at the millimeter scale. DNA and cDNA were analyzed for selected stations. Results: Sequence variants classified as the amoeboid rhizarian Rhogostoma and the ciliate Euplotes were found to be common members of the heterotrophic protist communities. They were accompanied by diatoms and kinetoplastids. Correlation analyses point to the salinity of the water column as a main driver influencing the structure of the protist communities at the five studied microbial mats. The active part of the protist communities was detected to be higher at lower salinities (<20 practical salinity units). Discussion: We found a restricted overlap of the protist community between the different microbial mats indicating the uniqueness of these different aquatic habitats. On the other hand, the dominating genotypes present in metabarcoding were similar and could be isolated and sequenced in comparative studies (Rhogostoma, Euplotes, Neobodo). Our results provide a snapshot of the unculturable protist diversity thriving the benthic zone of five athalossohaline lagoons across the Andean plateau.

5.
BMC Ecol Evol ; 24(1): 69, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802764

RESUMEN

BACKGROUND: Anthropogenic impacts on freshwater habitats are causing a recent biodiversity decline far greater than that documented for most terrestrial ecosystems. However, knowledge and description of freshwater biodiversity is still limited, especially targeting all size classes to uncover the distribution of biodiversity between different trophic levels. We assessed the biodiversity of the Lower Rhine and associated water bodies in the river's flood plain including the river's main channel, oxbows and gravel-pit lakes, spanning from the level of protists up to the level of larger invertebrate predators and herbivores organized in size classes (nano-, micro, meio- and macrofauna). Morphological diversity was determined by morphotypes, while the molecular diversity (amplicon sequencing variants, ASVs) was assessed through eDNA samples with metabarcoding targeting the V9 region of the 18S rDNA. RESULTS: Considering all four investigated size classes, the percentage of shared taxa between both approaches eDNA (ASVs with 80-100% sequence similarity to reference sequences) and morphology (morphotypes), was always below 15% (5.4 ± 3.9%). Even with a more stringent filtering of ASVs (98-100% similarity), the overlap of taxa could only reach up to 43% (18.3 ± 12%). We observed low taxonomic resolution of reference sequences from freshwater organisms in public databases for all size classes, especially for nano-, micro-, and meiofauna, furthermore lacking metainformation if species occur in freshwater, marine or terrestrial ecosystems. CONCLUSIONS: In our study, we provide a combination of morphotype detection and metabarcoding that particularly reveals the diversity in the smaller size classes and furthermore highlights the lack of genetic resources in reference databases for this diversity. Especially for protists (nano- and microfauna), a combination of molecular and morphological approaches is needed to gain the highest possible community resolution. The assessment of freshwater biodiversity needs to account for its sub-structuring in different ecological size classes and across compartments in order to reveal the ecological dimension of diversity and its distribution.


Asunto(s)
Biodiversidad , Código de Barras del ADN Taxonómico , Agua Dulce , Animales , ARN Ribosómico 18S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA