Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 59(11): 1035-1043, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35115415

RESUMEN

BACKGROUND: Nephrolithiasis (NL) is a complex multifactorial disease affecting up to 10%-20% of the human population and causing a significant burden on public health systems worldwide. It results from a combination of environmental and genetic factors. Hyperoxaluria is a major risk factor for NL. METHODS: We used a whole exome-based approach in a patient with calcium oxalate NL. The effects of the mutation were characterised using cell culture and in silico analyses. RESULTS: We identified a rare heterozygous missense mutation (c.1519C>T/p.R507W) in the SLC26A6 gene that encodes a secretory oxalate transporter. This mutation cosegregated with hyperoxaluria in the family. In vitro characterisation of mutant SLC26A6 demonstrated that Cl--dependent oxalate transport was dramatically reduced because the mutation affects both SLC26A6 transport activity and membrane surface expression. Cotransfection studies demonstrated strong dominant-negative effects of the mutant on the wild-type protein indicating that the phenotype of patients heterozygous for this mutation may be more severe than predicted by haploinsufficiency alone. CONCLUSION: Our study is in line with previous observations made in the mouse showing that SLC26A6 inactivation can cause inherited enteric hyperoxaluria with calcium oxalate NL. Consistent with an enteric form of hyperoxaluria, we observed a beneficial effect of increasing calcium in the patient's diet to reduce urinary oxalate excretion.


Asunto(s)
Antiportadores , Hiperoxaluria , Nefrolitiasis , Transportadores de Sulfato , Humanos , Antiportadores/genética , Calcio/metabolismo , Oxalato de Calcio/metabolismo , Hiperoxaluria/complicaciones , Hiperoxaluria/genética , Mutación , Nefrolitiasis/genética , Nefrolitiasis/complicaciones , Nefrolitiasis/metabolismo , Oxalatos/metabolismo , Transportadores de Sulfato/genética
2.
J Am Soc Nephrol ; 32(9): 2375-2385, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34281958

RESUMEN

BACKGROUND: The clinical significance of accumulating toxic terminal metabolites such as oxalate in patients with kidney failure is not well understood. METHODS: To evaluate serum oxalate concentrations and risk of all-cause mortality and cardiovascular events in a cohort of patients with kidney failure requiring chronic dialysis, we performed a post-hoc analysis of the randomized German Diabetes Dialysis (4D) Study; this study included 1255 European patients on hemodialysis with diabetes followed-up for a median of 4 years. The results obtained via Cox proportional hazards models were confirmed by competing risk regression and restricted cubic spline modeling in the 4D Study cohort and validated in a separate cohort of 104 US patients on dialysis after a median follow-up of 2.5 years. RESULTS: A total of 1108 patients had baseline oxalate measurements, with a median oxalate concentration of 42.4 µM. During follow-up, 548 patients died, including 139 (25.4%) from sudden cardiac death. A total of 413 patients reached the primary composite cardiovascular end point (cardiac death, nonfatal myocardial infarction, and fatal or nonfatal stroke). Patients in the highest oxalate quartile (≥59.7 µM) had a 40% increased risk for cardiovascular events (adjusted hazard ratio [aHR], 1.40; 95% confidence interval [95% CI], 1.08 to 1.81) and a 62% increased risk of sudden cardiac death (aHR, 1.62; 95% CI, 1.03 to 2.56), compared with those in the lowest quartile (≤29.6 µM). The associations remained when accounting for competing risks and with oxalate as a continuous variable. CONCLUSIONS: Elevated serum oxalate is a novel risk factor for cardiovascular events and sudden cardiac death in patients on dialysis. Further studies are warranted to test whether oxalate-lowering strategies improve cardiovascular mortality in patients on dialysis.


Asunto(s)
Enfermedades Cardiovasculares/epidemiología , Muerte Súbita Cardíaca/epidemiología , Fallo Renal Crónico/sangre , Oxalatos/sangre , Diálisis Renal , Anciano , Enfermedades Cardiovasculares/sangre , Femenino , Humanos , Fallo Renal Crónico/mortalidad , Fallo Renal Crónico/terapia , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Factores de Riesgo
3.
J Am Soc Nephrol ; 31(9): 1987-1995, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32660969

RESUMEN

BACKGROUND: A state of oxalate homeostasis is maintained in patients with healthy kidney function. However, as GFR declines, plasma oxalate (Pox) concentrations start to rise. Several groups of researchers have described augmentation of oxalate secretion in the colon in models of CKD, but the oxalate transporters remain unidentified. The oxalate transporter Slc26a6 is a candidate for contributing to the extrarenal clearance of oxalate via the gut in CKD. METHODS: Feeding a diet high in soluble oxalate or weekly injections of aristolochic acid induced CKD in age- and sex-matched wild-type and Slc26a6-/- mice. qPCR, immunohistochemistry, and western blot analysis assessed intestinal Slc26a6 expression. An oxalate oxidase assay measured fecal and Pox concentrations. RESULTS: Fecal oxalate excretion was enhanced in wild-type mice with CKD. This increase was abrogated in Slc26a6-/- mice associated with a significant elevation in plasma oxalate concentration. Slc26a6 mRNA and protein expression were greatly increased in the intestine of mice with CKD. Raising Pox without inducing kidney injury did not alter intestinal Slc26a6 expression, suggesting that changes associated with CKD regulate transporter expression rather than elevations in Pox. CONCLUSIONS: Slc26a6-mediated enteric oxalate secretion is critical in decreasing the body burden of oxalate in murine CKD models. Future studies are needed to address whether similar mechanisms contribute to intestinal oxalate elimination in humans to enhance extrarenal oxalate clearance.


Asunto(s)
Antiportadores/fisiología , Mucosa Intestinal/metabolismo , Oxalatos/sangre , Insuficiencia Renal Crónica/metabolismo , Transportadores de Sulfato/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Oxalatos/metabolismo
4.
Am J Physiol Renal Physiol ; 316(1): F128-F133, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427220

RESUMEN

The apical membrane Cl-/oxalate exchanger SLC26A6 has been demonstrated to play a role in proximal tubule NaCl transport based on studies in microperfused tubules. The present study is directed at characterizing the role of SLC26A6 in NaCl homeostasis in vivo under physiological conditions. Free-flow micropuncture studies revealed that volume and Cl- absorption were similar in surface proximal tubules of wild-type and Slc26a6-/- mice. Moreover, the increments in urine flow rate and sodium excretion following thiazide and furosemide infusion were identical in wild-type and Slc26a6-/- mice, indicating no difference in NaCl delivery out of the proximal tubule. The absence of an effect of deletion of SLC26A6 on NaCl homeostasis was further supported by the absence of lower blood pressure in Slc26a6-/- compared with wild-type mice on normal or low-salt diets. Moreover, raising plasma and urine oxalate by feeding mice a diet enriched in soluble oxalate did not affect mean blood pressure. In contrast to the lack of effect of SLC26A6 deletion on NaCl homeostasis, fractional excretion of oxalate was reduced from 1.6 in wild-type mice to 0.7 in Slc26a6-/- mice. We conclude that, although SLC26A6 is dispensable for renal NaCl homeostasis, it is required for net renal secretion of oxalate.


Asunto(s)
Antiportadores/metabolismo , Túbulos Renales Proximales/metabolismo , Ácido Oxálico/orina , Eliminación Renal , Cloruro de Sodio Dietético/orina , Transportadores de Sulfato/metabolismo , Animales , Antiportadores/deficiencia , Antiportadores/genética , Presión Sanguínea , Dieta Hiposódica , Femenino , Genotipo , Homeostasis , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Fenotipo , Transportadores de Sulfato/deficiencia , Transportadores de Sulfato/genética
6.
J Am Soc Nephrol ; 28(1): 242-249, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27313231

RESUMEN

Patients with cystic fibrosis have an increased incidence of hyperoxaluria and calcium oxalate nephrolithiasis. Net intestinal absorption of dietary oxalate results from passive paracellular oxalate absorption as modified by oxalate back secretion mediated by the SLC26A6 oxalate transporter. We used mice deficient in the cystic fibrosis transmembrane conductance regulator gene (Cftr) to test the hypothesis that SLC26A6-mediated oxalate secretion is defective in cystic fibrosis. We mounted isolated intestinal tissue from C57BL/6 (wild-type) and Cftr-/- mice in Ussing chambers and measured transcellular secretion of [14C]oxalate. Intestinal tissue isolated from Cftr-/- mice exhibited significantly less transcellular oxalate secretion than intestinal tissue of wild-type mice. However, glucose absorption, another representative intestinal transport process, did not differ in Cftr-/- tissue. Compared with wild-type mice, Cftr-/- mice showed reduced expression of SLC26A6 in duodenum by immunofluorescence and Western blot analysis. Furthermore, coexpression of CFTR stimulated SLC26A6-mediated Cl--oxalate exchange in Xenopus oocytes. In association with the profound defect in intestinal oxalate secretion, Cftr-/- mice had serum and urine oxalate levels 2.5-fold greater than those of wild-type mice. We conclude that defective intestinal oxalate secretion mediated by SLC26A6 may contribute to the hyperoxaluria observed in this mouse model of cystic fibrosis. Future studies are needed to address whether similar mechanisms contribute to the increased risk for calcium oxalate stone formation observed in patients with cystic fibrosis.


Asunto(s)
Oxalato de Calcio/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/fisiología , Mucosa Intestinal/metabolismo , Animales , Antiportadores/fisiología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Hiperoxaluria/etiología , Ratones , Ratones Noqueados , Transportadores de Sulfato
7.
Am J Physiol Cell Physiol ; 311(6): C866-C873, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27681177

RESUMEN

The brush border Cl--oxalate exchanger SLC26A6 plays an essential role in mediating intestinal secretion of oxalate and is crucial for the maintenance of oxalate homeostasis and the prevention of hyperoxaluria and calcium oxalate nephrolithiasis. Previous in vitro studies have suggested that SLC26A6 is heavily N-glycosylated. N-linked glycosylation is known to critically affect folding, trafficking, and function in a wide variety of integral membrane proteins and could therefore potentially have a critical impact on SLC26A6 function and subsequent oxalate homeostasis. Through a series of enzymatic deglycosylation studies we confirmed that endogenously expressed mouse and human SLC26A6 are indeed glycosylated, that the oligosaccharides are principally attached via N-glycosidic linkage, and that there are tissue-specific differences in glycosylation. In vitro cell culture experiments were then used to elucidate the functional significance of the addition of the carbohydrate moieties. Biotinylation studies of SLC26A6 glycosylation mutants indicated that glycosylation is not essential for cell surface delivery of SLC26A6 but suggested that it may affect the efficacy with which it is trafficked and maintained in the plasma membrane. Functional studies of transfected SLC26A6 demonstrated that glycosylation at two sites in the putative second extracellular loop of SLC26A6 is critically important for chloride-dependent oxalate transport and that enzymatic deglycosylation of SLC26A6 expressed on the plasma membrane of intact cells strongly reduced oxalate transport activity. Taken together, these studies indicated that oxalate transport function of SLC26A6 is critically dependent on glycosylation and that exoglycosidase-mediated deglycosylation of SLC26A6 has the capacity to profoundly modulate SLC26A6 function.


Asunto(s)
Antiportadores/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oxalatos/metabolismo , Animales , Células CACO-2 , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/fisiología , Cloruros/metabolismo , Glicosilación , Homeostasis/fisiología , Humanos , Transporte Iónico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nefrolitiasis/metabolismo , Zarigüeyas , Transporte de Proteínas/fisiología , Transportadores de Sulfato
8.
J Biol Chem ; 290(4): 1952-65, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25480791

RESUMEN

The epithelial brush-border Na(+)/H(+) exchanger NHE3 is acutely inhibited by cGKII/cGMP, but how cGKII inhibits NHE3 is unknown. This study tested the hypothesis that cGMP inhibits NHE3 by phosphorylating it and altering its membrane trafficking. Studies were carried out in PS120/NHERF2 and in Caco-2/Bbe cells overexpressing HA-NHE3 and cGKII, and in mouse ileum. NHE3 activity was measured with 2',7'-bis(carboxyethyl)-S-(and 6)carboxyfluorescein acetoxy methylester/fluorometry. Surface NHE3 was determined by cell surface biotinylation. Identification of NHE3 phosphorylation sites was by iTRAQ/LC-MS/MS with TiO2 enrichment and immunoblotting with specific anti-phospho-NHE3 antibodies. cGMP/cGKII rapidly inhibited NHE3, which was associated with reduced surface NHE3. cGMP/cGKII increased NHE3 phosphorylation at three sites (rabbit Ser(554), Ser(607), and Ser(663), equivalent to mouse Ser(552), Ser(605), and Ser(659)), all of which had to be present at the same time for cGMP to inhibit NHE3. NHE3-Ser(663) phosphorylation was not necessary for cAMP inhibition of NHE3. Dexamethasone (4 h) stimulated wild type NHE3 activity and increased surface expression but failed to stimulate NHE3 activity or increase surface expression when NHE3 was mutated to either S663A or S663D. We conclude that 1) cGMP inhibition of NHE3 is associated with phosphorylation of NHE3 at Ser(554), Ser(607), and Ser(663), all of which are necessary for cGMP/cGKII to inhibit NHE3. 2) Dexamethasone stimulates NHE3 by phosphorylation of a single site, Ser(663). The requirement for three phosphorylation sites in NHE3 for cGKII inhibition, and for phosphorylation of one of these sites for dexamethasone stimulation of NHE3, is a unique example of regulation by phosphorylation.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Sitios de Unión , Células CACO-2 , Membrana Celular/metabolismo , Dexametasona/química , Humanos , Mucosa Intestinal/metabolismo , Espectrometría de Masas , Ratones , Microvellosidades/metabolismo , Mutagénesis , Fosforilación , Estructura Terciaria de Proteína , Transporte de Proteínas , Serina/química , Intercambiador 3 de Sodio-Hidrógeno , Propiedades de Superficie , Transfección
9.
Am J Physiol Renal Physiol ; 310(8): F785-F795, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-26764204

RESUMEN

Chronic kidney disease (CKD) research is limited by the lack of convenient inducible models mimicking human CKD and its complications in experimental animals. We demonstrate that a soluble oxalate-rich diet induces stable stages of CKD in male and female C57BL/6 mice. Renal histology is characterized by tubular damage, remnant atubular glomeruli, interstitial inflammation, and fibrosis, with the extent of tissue involvement depending on the duration of oxalate feeding. Expression profiling of markers and magnetic resonance imaging findings established to reflect inflammation and fibrosis parallel the histological changes. Within 3 wk, the mice reproducibly develop normochromic anemia, metabolic acidosis, hyperkalemia, FGF23 activation, hyperphosphatemia, and hyperparathyroidism. In addition, the model is characterized by profound arterial hypertension as well as cardiac fibrosis that persist following the switch to a control diet. Together, this new model of inducible CKD overcomes a number of previous experimental limitations and should serve useful in research related to CKD and its complications.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión/etiología , Ácido Oxálico , Insuficiencia Renal Crónica/complicaciones , Uremia/etiología , Animales , Factor-23 de Crecimiento de Fibroblastos , Fibrosis , Hipertensión/patología , Ratones , Ratones Endogámicos C57BL , Miocardio/patología , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/patología , Uremia/patología
10.
Curr Opin Nephrol Hypertens ; 25(4): 363-71, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27191349

RESUMEN

PURPOSE OF REVIEW: Oxalate is an end product of metabolism excreted via the kidney. Excess urinary oxalate, whether from primary or enteric hyperoxaluria, can lead to oxalate deposition in the kidney. Oxalate crystals are associated with renal inflammation, fibrosis, and progressive renal failure. It has long been known that as the glomerular filtration rate becomes reduced in chronic kidney disease (CKD), there is striking elevation of plasma oxalate. Taken together, these findings raise the possibility that elevation of plasma oxalate in CKD may promote renal inflammation and more rapid progression of CKD independent of primary cause. RECENT FINDINGS: The inflammasome has recently been identified to play a critical role in oxalate-induced renal inflammation. Oxalate crystals have been shown to activate the NOD-like receptor family, pyrin domain containing 3 inflammasome (also known as NALP3, NLRP3, or cryopyrin), resulting in release of IL-1ß and macrophage infiltration. Deletion of inflammasome proteins in mice protects from oxalate-induced renal inflammation and progressive renal failure. SUMMARY: The findings reviewed in this article expand our understanding of the relevance of elevated plasma oxalate levels leading to inflammasome activation. We propose that inhibiting oxalate-induced inflammasome activation, or lowering plasma oxalate, may prevent or mitigate progressive renal damage in CKD, and warrants clinical trials.


Asunto(s)
Inflamasomas/inmunología , Interleucina-1beta/inmunología , Riñón/inmunología , Macrófagos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Oxalatos/inmunología , Insuficiencia Renal Crónica/inmunología , Animales , Progresión de la Enfermedad , Fibrosis , Humanos , Inflamación , Riñón/metabolismo , Riñón/patología , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Oxalatos/metabolismo , Insuficiencia Renal Crónica/metabolismo
11.
Nat Genet ; 38(4): 474-8, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16532010

RESUMEN

Urolithiasis is one of the most common urologic diseases in industrialized societies. Calcium oxalate is the predominant component in 70-80% of kidney stones, and small changes in urinary oxalate concentration affect the risk of stone formation. SLC26A6 is an anion exchanger expressed on the apical membrane in many epithelial tissues, including kidney and intestine. Among its transport activities, SLC26A6 mediates Cl(-)-oxalate exchange. Here we show that mutant mice lacking Slc26a6 develop a high incidence of calcium oxalate urolithiasis. Slc26a6-null mice have significant hyperoxaluria and elevation in plasma oxalate concentration that is greatly attenuated by dietary oxalate restriction. In vitro flux studies indicated that mice lacking Slc26a6 have a defect in intestinal oxalate secretion resulting in enhanced net absorption of oxalate. We conclude that the anion exchanger SLC26A6 has a major constitutive role in limiting net intestinal absorption of oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis.


Asunto(s)
Antiportadores/fisiología , Oxalato de Calcio/metabolismo , Cálculos Urinarios/genética , Animales , Antiportadores/genética , Oxalato de Calcio/sangre , Oxalato de Calcio/orina , Ratones , Ratones Noqueados , Transportadores de Sulfato , Cálculos Urinarios/sangre , Cálculos Urinarios/metabolismo , Cálculos Urinarios/orina
12.
J Am Soc Nephrol ; 24(7): 1104-13, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23766534

RESUMEN

Inherited and acquired disorders that enhance the activity of transporters mediating renal tubular Na(+) reabsorption are well established causes of hypertension. It is unclear, however, whether primary activation of an Na(+)-independent chloride transporter in the kidney can also play a pathogenic role in this disease. Here, mice overexpressing the chloride transporter pendrin in intercalated cells of the distal nephron (Tg(B1-hPDS) mice) displayed increased renal absorption of chloride. Compared with normal mice, these transgenic mice exhibited a delayed increase in urinary NaCl and ultimately, developed hypertension when exposed to a high-salt diet. Administering the same sodium intake as NaHCO3 instead of NaCl did not significantly alter BP, indicating that the hypertension in the transgenic mice was chloride-sensitive. Moreover, excessive chloride absorption by pendrin drove parallel absorption of sodium through the epithelial sodium channel ENaC and the sodium-driven chloride/bicarbonate exchanger (Ndcbe), despite an appropriate downregulation of these sodium transporters in response to the expanded vascular volume and hypertension. In summary, chloride transport in the distal nephron can play a primary role in driving NaCl transport in this part of the kidney, and a primary abnormality in renal chloride transport can provoke arterial hypertension. Thus, we conclude that the chloride/bicarbonate exchanger pendrin plays a major role in controlling net NaCl absorption, thereby influencing BP under conditions of high salt intake.


Asunto(s)
Presión Sanguínea/fisiología , Antiportadores de Cloruro-Bicarbonato/metabolismo , Cloruros/metabolismo , Hipertensión/metabolismo , Riñón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Nefronas/metabolismo , Cloruro de Sodio/metabolismo , Animales , Humanos , Inmunohistoquímica , Transporte Iónico , Ratones , Ratones Transgénicos , Transportadores de Sulfato
13.
Sci Rep ; 14(1): 11323, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760468

RESUMEN

Oxalate, a uremic toxin that accumulates in dialysis patients, is associated with cardiovascular disease. As oxalate crystals can activate immune cells, we tested the hypothesis that plasma oxalate would be associated with cytokine concentrations and cardiovascular outcomes in dialysis patients. In a cohort of 104 US patients with kidney failure requiring dialysis (cohort 1), we measured 21 inflammatory markers. As IL-16 was the only cytokine to correlate with oxalate, we focused further investigations on IL-16. We searched for associations between concentrations of IL-16 and mortality and cardiovascular events in the 4D cohort (1255 patients, cohort 2) and assessed further associations of IL-16 with other uremic toxins in this cohort. IL-16 levels were positively correlated with pOx concentrations (ρ = 0.39 in cohort 1, r = 0.35 in cohort 2) and were elevated in dialysis patients when compared to healthy individuals. No significant association could be found between IL-16 levels and cardiovascular events or mortality in the 4D cohort. We conclude that the cytokine IL-16 correlates with plasma oxalate concentrations and is substantially increased in patients with kidney failure on dialysis. However, no association could be detected between IL-16 concentrations and cardiovascular disease in the 4D cohort.


Asunto(s)
Enfermedades Cardiovasculares , Factores de Riesgo de Enfermedad Cardiaca , Interleucina-16 , Diálisis Renal , Humanos , Masculino , Femenino , Persona de Mediana Edad , Interleucina-16/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Anciano , Oxalatos/sangre , Biomarcadores/sangre , Estudios de Cohortes , Adulto , Factores de Riesgo , Fallo Renal Crónico/terapia , Fallo Renal Crónico/sangre , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/mortalidad
14.
Kidney Int ; 84(5): 895-901, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23739234

RESUMEN

Oxalate nephropathy with renal failure is caused by multiple disorders leading to hyperoxaluria due to either overproduction of oxalate (primary hyperoxaluria) or excessive absorption of dietary oxalate (enteric hyperoxaluria). To study the etiology of renal failure in crystal-induced kidney disease, we created a model of progressive oxalate nephropathy by feeding mice a diet high in soluble oxalate (high oxalate in the absence of dietary calcium). Renal histology was characterized by intratubular calcium-oxalate crystal deposition with an inflammatory response in the surrounding interstitium. Oxalate nephropathy was not found in mice fed a high oxalate diet that also contained calcium. NALP3, also known as cryopyrin, has been implicated in crystal-associated diseases such as gout and silicosis. Mice fed the diet high in soluble oxalate demonstrated increased NALP3 expression in the kidney. Nalp3-null mice were completely protected from the progressive renal failure and death that occurred in wild-type mice fed the diet high in soluble oxalate. NALP3 deficiency did not affect oxalate homeostasis, thereby excluding differences in intestinal oxalate handling to explain the observed phenotype. Thus, progressive renal failure in oxalate nephropathy results primarily from NALP3-mediated inflammation.


Asunto(s)
Proteínas Portadoras/metabolismo , Inflamasomas/metabolismo , Mediadores de Inflamación/metabolismo , Riñón/metabolismo , Nefritis/metabolismo , Oxalatos , Insuficiencia Renal/metabolismo , Animales , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Genotipo , Inflamasomas/inmunología , Riñón/inmunología , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Nefritis/inducido químicamente , Nefritis/inmunología , Nefritis/patología , Fenotipo , Insuficiencia Renal/inducido químicamente , Insuficiencia Renal/inmunología , Insuficiencia Renal/patología , Insuficiencia Renal/prevención & control , Transducción de Señal , Factores de Tiempo
15.
Nat Rev Nephrol ; 19(2): 123-138, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36329260

RESUMEN

Oxalate homeostasis is maintained through a delicate balance between endogenous sources, exogenous supply and excretion from the body. Novel studies have shed light on the essential roles of metabolic pathways, the microbiome, epithelial oxalate transporters, and adequate oxalate excretion to maintain oxalate homeostasis. In patients with primary or secondary hyperoxaluria, nephrolithiasis, acute or chronic oxalate nephropathy, or chronic kidney disease irrespective of aetiology, one or more of these elements are disrupted. The consequent impairment in oxalate homeostasis can trigger localized and systemic inflammation, progressive kidney disease and cardiovascular complications, including sudden cardiac death. Although kidney replacement therapy is the standard method for controlling elevated plasma oxalate concentrations in patients with kidney failure requiring dialysis, more research is needed to define effective elimination strategies at earlier stages of kidney disease. Beyond well-known interventions (such as dietary modifications), novel therapeutics (such as small interfering RNA gene silencers, recombinant oxalate-degrading enzymes and oxalate-degrading bacterial strains) hold promise to improve the outlook of patients with oxalate-related diseases. In addition, experimental evidence suggests that anti-inflammatory medications might represent another approach to mitigating or resolving oxalate-induced conditions.


Asunto(s)
Hiperoxaluria , Insuficiencia Renal Crónica , Insuficiencia Renal , Humanos , Oxalatos/metabolismo , Oxalatos/farmacología , Oxalatos/uso terapéutico , Diálisis Renal , Riñón/metabolismo , Hiperoxaluria/terapia , Hiperoxaluria/tratamiento farmacológico , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal/complicaciones , Homeostasis
16.
J Clin Invest ; 133(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719378

RESUMEN

Sulfate plays a pivotal role in numerous physiological processes in the human body, including bone and cartilage health. A role of the anion transporter SLC26A1 (Sat1) for sulfate reabsorption in the kidney is supported by the observation of hyposulfatemia and hypersulfaturia in Slc26a1-knockout mice. The impact of SLC26A1 on sulfate homeostasis in humans remains to be defined. By combining clinical genetics, functional expression assays, and population exome analysis, we identify SLC26A1 as a sulfate transporter in humans and experimentally validate several loss-of-function alleles. Whole-exome sequencing from a patient presenting with painful perichondritis, hyposulfatemia, and renal sulfate wasting revealed a homozygous mutation in SLC26A1, which has not been previously described to the best of our knowledge. Whole-exome data analysis of more than 5,000 individuals confirmed that rare, putatively damaging SCL26A1 variants were significantly associated with lower plasma sulfate at the population level. Functional expression assays confirmed a substantial reduction in sulfate transport for the SLC26A1 mutation of our patient, which we consider to be novel, as well as for the additional variants detected in the population study. In conclusion, combined evidence from 3 complementary approaches supports SLC26A1 activity as a major determinant of sulfate homeostasis in humans. In view of recent evidence linking sulfate homeostasis with back pain and intervertebral disc disorder, our study identifies SLC26A1 as a potential target for modulation of musculoskeletal health.


Asunto(s)
Proteínas de Transporte de Anión , Sulfatos , Animales , Ratones , Humanos , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Transportadores de Sulfato/genética , Transportadores de Sulfato/metabolismo , Transporte Iónico , Sulfatos/metabolismo , Homeostasis , Ratones Noqueados , Antiportadores/genética
17.
Am J Physiol Cell Physiol ; 302(1): C46-58, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21956166

RESUMEN

Urolithiasis remains a very common disease in Western countries. Seventy to eighty percent of kidney stones are composed of calcium oxalate, and minor changes in urinary oxalate affect stone risk. Intestinal oxalate secretion mediated by anion exchanger SLC26A6 plays a major constitutive role in limiting net absorption of ingested oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis. Using the relatively selective PKC-δ inhibitor rottlerin, we had previously found that PKC-δ activation inhibits Slc26a6 activity in mouse duodenal tissue. To identify a model system to study physiologic agonists upstream of PKC-δ, we characterized the human intestinal cell line T84. Knockdown studies demonstrated that endogenous SLC26A6 mediates most of the oxalate transport by T84 cells. Cholinergic stimulation with carbachol modulates intestinal ion transport through signaling pathways including PKC activation. We therefore examined whether carbachol affects oxalate transport in T84 cells. We found that carbachol significantly inhibited oxalate transport by T84 cells, an effect blocked by rottlerin. Carbachol also led to significant translocation of PKC-δ from the cytosol to the membrane of T84 cells. Using pharmacological inhibitors, we observed that carbachol inhibits oxalate transport through the M(3) muscarinic receptor and phospholipase C. Utilizing the Src inhibitor PP2 and phosphorylation studies, we found that the observed regulation downstream of PKC-δ is partially mediated by c-Src. Biotinylation studies revealed that carbachol inhibits oxalate transport by reducing SLC26A6 surface expression. We conclude that carbachol negatively regulates oxalate transport by reducing SLC26A6 surface expression in T84 cells through signaling pathways including the M(3) muscarinic receptor, phospholipase C, PKC-δ, and c-Src.


Asunto(s)
Oxalato de Calcio/antagonistas & inhibidores , Antagonistas Colinérgicos/farmacología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/fisiología , Transducción de Señal/fisiología , Oxalato de Calcio/metabolismo , Carbacol/farmacología , Línea Celular , Antagonistas Colinérgicos/metabolismo , Humanos , Mucosa Intestinal/citología , Proteínas de Transporte de Membrana/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Receptor Muscarínico M3/metabolismo , Transducción de Señal/efectos de los fármacos , Transportadores de Sulfato
18.
Am J Physiol Cell Physiol ; 303(1): C52-7, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22517357

RESUMEN

Mice deficient for the apical membrane oxalate transporter SLC26A6 develop hyperoxalemia, hyperoxaluria, and calcium oxalate stones due to a defect in intestinal oxalate secretion. However, the nature of the basolateral membrane oxalate transport process that operates in series with SLC26A6 to mediate active oxalate secretion in the intestine remains unknown. Sulfate anion transporter-1 (Sat1 or SLC26A1) is a basolateral membrane anion exchanger that mediates intestinal oxalate transport. Moreover, Sat1-deficient mice also have a phenotype of hyperoxalemia, hyperoxaluria, and calcium oxalate stones. We, therefore, tested the role of Sat1 in mouse duodenum, a tissue with Sat1 expression and SLC26A6-dependent oxalate secretion. Although the active secretory flux of oxalate across mouse duodenum was strongly inhibited (>90%) by addition of the disulfonic stilbene DIDS to the basolateral solution, secretion was unaffected by changes in medium concentrations of sulfate and bicarbonate, key substrates for Sat1-mediated anion exchange. Inhibition of intracellular bicarbonate production by acetazolamide and complete removal of bicarbonate from the buffer also produced no change in oxalate secretion. Finally, active oxalate secretion was not reduced in Sat1-null mice. We conclude that a DIDS-sensitive basolateral transporter is involved in mediating oxalate secretion across mouse duodenum, but Sat1 itself is dispensable for this process.


Asunto(s)
Proteínas de Transporte de Anión/metabolismo , Antiportadores/metabolismo , Duodeno/metabolismo , Oxalatos/metabolismo , Ácido 4,4'-Diisotiocianostilbeno-2,2'-Disulfónico/farmacología , Acetazolamida/farmacología , Animales , Proteínas de Transporte de Anión/deficiencia , Proteínas de Transporte de Anión/genética , Antiportadores/deficiencia , Antiportadores/genética , Transporte Biológico Activo , Ratones , Ratones Noqueados , Transportadores de Sulfato
19.
J Am Soc Nephrol ; 22(11): 1981-9, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21980112

RESUMEN

Maintenance of extracellular K(+) concentration within a narrow range is vital for numerous cell functions, particularly electrical excitability of heart and muscle. Potassium homeostasis during intermittent ingestion of K(+) involves rapid redistribution of K(+) into the intracellular space to minimize increases in extracellular K(+) concentration, and ultimate elimination of the K(+) load by renal excretion. Recent years have seen great progress in identifying the transporters and channels involved in renal and extrarenal K(+) homeostasis. Here we apply these advances in molecular physiology to understand how acid-base disturbances affect serum potassium.


Asunto(s)
Equilibrio Ácido-Base/fisiología , Homeostasis/fisiología , Riñón/fisiología , Canales de Potasio/fisiología , Potasio/fisiología , Acidosis/fisiopatología , Animales , Humanos , Concentración de Iones de Hidrógeno , Hiperpotasemia/fisiopatología , Músculo Esquelético/fisiología , Potasio/sangre , Potasio/orina , Intercambiadores de Sodio-Hidrógeno/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología
20.
J Am Soc Nephrol ; 22(12): 2247-55, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22021714

RESUMEN

Mice lacking the oxalate transporter SLC26A6 develop hyperoxalemia, hyperoxaluria, and calcium-oxalate stones as a result of a defect in intestinal oxalate secretion, but what accounts for the absorptive oxalate flux remains unknown. We measured transepithelial absorption of [(14)C]oxalate simultaneously with the flux of [(3)H]mannitol, a marker of the paracellular pathway, across intestine from wild-type and Slc26a6-null mice. We used the anion transport inhibitor DIDS to investigate other members of the SLC26 family that may mediate transcellular oxalate absorption. Absorptive flux of oxalate in duodenum was similar to mannitol, insensitive to DIDS, and nonsaturable, indicating that it is predominantly passive and paracellular. In contrast, in wild-type mice, secretory flux of oxalate in duodenum exceeded that of mannitol, was sensitive to DIDS, and saturable, indicating transcellular secretion of oxalate. In Slc26a6-null mice, secretory flux of oxalate was similar to mannitol, and no net flux of oxalate occurred. Absorptive fluxes of both oxalate and mannitol varied in parallel in different segments of small and large intestine. In epithelial cell lines, modulation of the charge selectivity of the claudin-based pore pathway did not affect oxalate permeability, but knockdown of the tight-junction protein ZO-1 enhanced permeability to oxalate and mannitol in parallel. Moreover, formation of soluble complexes with cations did not affect oxalate absorption. In conclusion, absorptive oxalate flux occurs through the paracellular "leak" pathway, and net absorption of dietary oxalate depends on the relative balance between absorption and SLC26A6-dependent transcellular secretion.


Asunto(s)
Antiportadores/fisiología , Absorción Intestinal , Mucosa Intestinal/metabolismo , Oxalatos/metabolismo , Animales , Ratones , Transportadores de Sulfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA